
Recall: HMM (hidden Markov model, skrytý Markovov model)

model
(HMM)

random DNA sequence S, random
(similar to real DNA)

Pr(S,A) – probability that the model generates pair (S,A).

a:0.24

c:0.27

g:0.28

t:0.21

a:0.27

c:0.23

g:0.23

t:0.27

a:0.26

c:0.22

g:0.22

t:0.30

0.007

0.999

0.001

0.99 0.99

0.003 0.01

Assume the model starts in the blue state

Pr(acag) = 0.27 · 0.001 · 0.27 · 0.99 · 0.24 · 0.99 · 0.28 = 4.8 · 10−6

Pr(acag) = 0.27 · 0.999 · 0.23 · 0.999 · 0.27 · 0.999 · 0.23 = 0.0038

1



Another toy example: weather

� Period of low atmospheric pressure: mostly raining

� Period of high atmospheirc pressure: mostly sunny

Each period typically lasts several days

Exercise: Represent by an HMM

2



Recall: Parameters of HMMs (notation)

Sequence S = S1, . . . , Sn

Annotation A = A1, . . . , An

Model parameters:

Transition probability a(u, v) = Pr(Ai+1 = v|Ai = u),

Emission probability e(u, x) = Pr(Si = x|Ai = u),

Starting probability π(u) = Pr(A1 = u).

a

0.99 0.007 0.003

0.01 0.99 0

0.001 0 0.999

e a c g t

0.24 0.27 0.28 0.21

0.26 0.22 0.22 0.30

0.27 0.23 0.23 0.27

The resulting probability:

Pr(A,S) = π(A1)e(A1, S1)
∏n

i=2 a(Ai−1, Ai)e(Ai, Si)

3



Viterbi algorithm

For a given HMM and sequence S,

find the most probable annotation (state path)

A = argmaxA Pr(A,S) = argmaxA Pr(A |S)

Any ideas?

Recall our example:

Pr(acag) = 0.27 · 0.001 · 0.27 · 0.99 · 0.24 · 0.99 · 0.28 = 4.8 · 10−6

Pr(acag) = 0.27 · 0.999 · 0.23 · 0.999 · 0.27 · 0.999 · 0.23 = 0.0038

4



Viterbi algorithm

Find the most probable state path A = argmaxA Pr(A,S)

Subproblem V [u, i]: probability of the most probable state path generating

S1S2 . . . Si and ending in state u

a:0.24

c:0.27

g:0.28

t:0.21

a:0.27

c:0.23

g:0.23

t:0.27

a:0.26

c:0.22

g:0.22

t:0.30

0.007

0.999

0.001

0.99 0.99

0.003 0.01

V [u, i] a c a g

5



Viterbi algorithm

Subproblem V [u, i]: probability of the most probable state path generating

S1S2 . . . Si and ending in state u

Recurrence?

V [u, 1] =

V [u, i] =

Recall notation:

Sequence S = S1, . . . , Sn, annotation A = A1, . . . , An

Transition probability a(u, v) = Pr(Ai+1 = v|Ai = u),

Emission probability e(u, x) = Pr(Si = x|Ai = u),

Starting probability π(u) = Pr(A1 = u).

Pr(A,S) = π(A1)e(A1, S1)
∏n

i=2 a(Ai−1, Ai)e(Ai, Si)

6



Viterbi algorithm

Subproblem V [u, i]: probability of the most probable state path generating

S1S2 . . . Si and ending in state u

Recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

Algorithm, final answer, running time?

Recall notation:

Sequence S = S1, . . . , Sn, annotation A = A1, . . . , An

Transition probability a(u, v) = Pr(Ai+1 = v|Ai = u),

Emission probability e(u, x) = Pr(Si = x|Ai = u),

Starting probability π(u) = Pr(A1 = u).

Pr(A,S) = π(A1)e(A1, S1)
∏n

i=2 a(Ai−1, Ai)e(Ai, Si)

7



Viterbi algorithm (overview)

Goal: Find the most probable state path A = argmaxA Pr(A,S)

Subproblem V [u, i]: probability of the most probable state path generating

S1S2 . . . Si and ending in state u

Recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

Algorithm:

Initialize V [∗, 1]
for i = 2 . . . n (n=length of S)

for u = 1 . . .m (m =number of states)

compute V [u, i], keep best w in B[u, i]

Maximum V [u, n] over all u is maxA Pr(A,S)

Retrieve the full path using matrix B

Dynamic programming in O(nm2) time

8



Second problem: overall probability of S

Viterbi computes argmaxA Pr(A,S)

Now we want Pr(S) =
∑

A Pr(A,S)

Usefull e.g. to compare different models, which is more likely to produce S

Any ideas?

Recall our example:

Pr(acag) = 0.27 · 0.001 · 0.27 · 0.99 · 0.24 · 0.99 · 0.28 = 4.8 · 10−6

Pr(acag) = 0.27 · 0.999 · 0.23 · 0.999 · 0.27 · 0.999 · 0.23 = 0.0038

9



Forward algorithm (dopredný algoritmus)

Computes overall probability that the model emits S Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate S1, S2, . . . Si and

end in state u.

F [u, i] = Pr(Ai = u ∧ S1, S2, . . . , Si) =∑
A1,...,Ai−1,Ai=u Pr(A1, A2, ..., Ai ∧ S1, S2, ..., Si)

Recurrence?

F [u, 1] =

F [u, i] =

Recall Viterbi recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

10



Forward algorithm

Computes overall probability that the model emits S Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate S1, S2, . . . Si and

end in state u.

Recurrence:

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Recall Viterbi recurrence:

V [u, 1] = πu · eu,S1

V [u, i] = maxw V [w, i− 1] · aw,u · eu,Si

11



Forward algorithm

Computes overall probability that the model emits S Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate S1, S2, . . . Si and

end in state u.

Recurrence:

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Result? Pr(S) =

Running time?

12



Forward algorithm

Computes overall probability that the model emits S Pr(S) =
∑

A Pr(A,S)

Subproblem F [u, i]: probability that in i steps we generate S1, S2, . . . Si and

end in state u.

Recurrence:

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Result Pr(S) =
∑

u F [u, n]

Running time O(nm2)

13



Third problem: probability that Si was generated in state u

Pr(Ai = u |S) = Pr(Ai=u,S)
Pr(S)

Pr(Ai = u, S) =
∑

A:Ai=u Pr(A,S)

Compute this by a combination of forward and backward algorithms

F [u, i]: probability that in i steps we generate S1, S2, . . . Si and end in state u.

B[u, i]: probability that if we start at u at position i, we will generate

Si+1 . . . , Sn in the next steps

Pr(Ai = u, S) = F [u, i] ·B[u, i]

14



Backward algorithm (spätný algoritmus)

Forward algorithm F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Backward algorithm B[u, i]: probability that if we start at u at position i, we will

generate Si+1 . . . , Sn in the next steps

How to compute B[u, i]?

15



Backward algorithm (spätný algoritmus)

Forward algorithm F [u, i]: probability that in i steps we generate

S1, S2, . . . Si and end in state u.

F [u, 1] = πu · eu,S1

F [u, i] =
∑

w F [w, i− 1] · aw,u · eu,Si

Backward algorithm B[u, i]: probability that if we start at u at position i, we will

generate Si+1 . . . , Sn in the next steps

B[u, n] = 1

B[u, i] =
∑

w B[w, i+ 1] · au,w · ew,Si+1

Exercise: How to use matrix B to compute Pr(S)?

16



Posterior decoding

Using forward/backward we can compute

Pr(Ai = u |S) for each u and i (posterior probabilities of states)

in O(nm2) overall time

We can also select A such that Ai = maxi Pr(Ai = u |S)
Advantage: This takes into account suboptimal state paths

Disadvantage: Pr(A |S) can be zero or very low

Another option: use posterior probabilities to assign confidence to parts of

prediction from Viterbi

17



Recall: Finding genes with HMMs

model
(HMM)

random DNA sequence S, random
(similar to real DNA)

Pr(S,A) – probability that the model generates pair (S,A).

� Determine states and transitions of the model: by hand based on your

knowledge about the gene structure

� Parameter training: emission and transition probabilities are determined

based on the real sequences with known genes (training set)

� Use: for a new sequence S, find the most probable annotation

A = argmaxA Pr(A|S)
Viterbi algorithm in O(nm2) (dynamic programming)

18



Parameter training

� States and allowed transitions typically manually

� Probabilities of transition, emission, starting usually automatically from

training adata

� More complex models with more parameters need more training data

Otherwise overfitting: model fits training data very well but behaves poorly

on unseen examples

� To test acurracy of the model use a separate testing set not used for training.

19



HMM parameter training from annotated sequences

Input: state diagram of the model and a training set of sequences and state paths

(S(1), A(1)), (S(2), A(2)), . . .

Goal: choose parameters maximalizing their likelihood in the model

argmaxa,e,π
∏

i Pr(S
(i), A(i)|a, e, π)

This is achieved by using observed frequencies

For example au,v : find all occurrences of state u and find out how often is it

followed by v

20



HMM parameter training from unannotated sequences

Input: state diagram of the model and a training set of sequences

S(1), S(2), . . ., state paths A(1) unknown

Goal: choose parameters maximalizing their likelihood in the model

argmaxa,e,π
∏

i Pr(S
(i)|a, e, π)

Baum-Welch algorithm (version of expectation maximization, EM).

Iterative heuristic algorithm improving parameters until convergence.

Each iteration forward and backward algorithms

21


