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Markov chains

� similar to hidden Markov models: states and transitions, but no emissions

� more formally, sequence of random variables X0, X1, . . . , Xn such that state at

time t depends only on the state at time t− 1 and not on previous states:

P (Xt|X0, . . . , Xt−1) = P (Xt|Xt−1)

� Homogeneous Markov chains: P (Xt|Xt−1) does not depend on t

� Transition probability matrix: probabilities of moving from one state to another

M [x, y] = P (Xt = y|Xt−1 = x)

Example: states {A, C, G, T} can be used to track mutations at a specific position in a

chromosome at a specific time point
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Markov chains - Stationary distribution (/equilibrium)

� fundamental concept that describes the long-term behavior of a chain

� A distribution π over the set of states is called stationary for a Markov chain with

transition matrix M if for every y it holds that∑
x

π(x)M [x, y] = π(y)

(or in matrix notation πM = π)

� after many steps (t → ∞), all rows of the matrix converge to the stationary

distribution

� A Markov chain can:

– start in a stationary distribution and therefore remain in it

– approach the equilibrium as time passes (speed depends on chain structure)

� A chain always converges (regardless of the initial state) if it is ergodic:

Mt for some t > 0 has all entries nonzero
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Substitution models, notation

P (b|a, t): probability that if we start with symbol a, after time t we will see

symbol b
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Substitution models, notation

P (b|a, t): probability that if we start with symbol a, after time t we will see

symbol b

Transition probability matrix:

S(t) =


P (A|A, t) P (C|A, t) P (G|A, t) P (T |A, t)

P (A|C, t) P (C|C, t) P (G|C, t) P (T |C, t)
P (A|G, t) P (C|G, t) P (G|G, t) P (T |G, t)

P (A|T, t) P (C|T, t) P (G|T, t) P (T |T, t)


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Substitution models, basic properties

� S(0) = I

� limt→∞ S(t) =


πA πC πG πT

πA πC πG πT

πA πC πG πT

πA πC πG πT


Distribution π is called stationary (equilibrium)

� S(t1 + t2) = S(t1)S(t2) (multiplicativity)

� Jukes-Cantor model should also satisfy

S(t) =


1− 3s(t) s(t) s(t) s(t)

s(t) 1− 3s(t) s(t) s(t)

s(t) s(t) 1− 3s(t) s(t)

s(t) s(t) s(t) 1− 3s(t)


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S(t) =


1− 3s(t) s(t) s(t) s(t)

s(t) 1− 3s(t) s(t) s(t)

s(t) s(t) 1− 3s(t) s(t)

s(t) s(t) s(t) 1− 3s(t)



S(ϵ) =


1− 3s(ϵ) s(ϵ) s(ϵ) s(ϵ)

s(ϵ) 1− 3s(ϵ) s(ϵ) s(ϵ)

s(ϵ) s(ϵ) 1− 3s(ϵ) s(ϵ)

s(ϵ) s(ϵ) s(ϵ) 1− 3s(ϵ)


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Jukes-Cantor model

S(t) =


(1 + 3e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4

(1− e−4αt)/4 (1 + 3e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4

(1− e−4αt)/4 (1− e−4αt)/4 (1 + 3e−4αt)/4 (1− e−4αt)/4

(1− e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4 (1 + 3e−4αt)/4


Equilibrium?
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S(t) =


1− 3s(t) s(t) s(t) s(t)

s(t) 1− 3s(t) s(t) s(t)

s(t) s(t) 1− 3s(t) s(t)

s(t) s(t) s(t) 1− 3s(t)



S(2t) = S(t)2 =

=


1− 6s(t) + 12s(t)2 2s(t)− 4s(t)2 2s(t)− 4s(t)2 2s(t)− 4s(t)2

2s(t)− 4s(t)2 1− 6s(t) + 12s(t)2 2s(t)− 4s(t)2 2s(t)− 4s(t)2

2s(t)− 4s(t)2 2s(t)− 4s(t)2 1− 6s(t) + 12s(t)2 2s(t)− 4s(t)2

2s(t)− 4s(t)2 2s(t)− 4s(t)2 2s(t)− 4s(t)2 1− 6s(t) + 12s(t)2



≈


1− 6s(t) 2s(t) 2s(t) 2s(t)

2s(t) 1− 6s(t) 2s(t) 2s(t)

2s(t) 2s(t) 1− 6s(t) 2s(t)

2s(t) 2s(t) 2s(t) 1− 6s(t)


for t → 0
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Substitution rate matrix (matica rýchlostí, matica intenzít)

� Substitution rate matrix for Jukes-Cantor model:

R =


−3α α α α

α −3α α α

α α −3α α

α α α −3α


� For very small t we have S(t) ≈ I +Rt

� Rate α is the probablity of a change per unit of time for very small t, or

derivative of s(t) with respect to t at t = 0

� Solving the differential equation for the Jukes-Cantor model we get

s(t) = (1− e−4αt)/4
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S(t) =


1− 3s(t) s(t) s(t) s(t)

s(t) 1− 3s(t) s(t) s(t)

s(t) s(t) 1− 3s(t) s(t)

s(t) s(t) s(t) 1− 3s(t)



R =


−3α α α α

α −3α α α

α α −3α α

α α α −3α


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Jukes-Cantor model

S(t) =


(1 + 3e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4

(1− e−4αt)/4 (1 + 3e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4

(1− e−4αt)/4 (1− e−4αt)/4 (1 + 3e−4αt)/4 (1− e−4αt)/4

(1− e−4αt)/4 (1− e−4αt)/4 (1− e−4αt)/4 (1 + 3e−4αt)/4


� The rate matrix is typically normalized so that there is on average one

substitution per unit of time (time step = substitution occurred)

� In Jukes-Cantor model, α = 1/3: it represents the equal probability of

transition to any of the three other nucleotides from the current nucleotide
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Jukes-Cantor model, summary

� S(t): matrix 4× 4, where S(t)a,b = P (b|a, t) is the probability that if we start with

base a, after time t we have base b.

� Jukes-Cantor model assumes that P (b|a, t) is the same for all a ̸= b

� For a given time t, off-diagonal elements are s(t), diagonal 1− 3s(t)

� Rate matrix R: for J-C off-diagonal α, diagonal −3α

� For very small t we have S(t) ≈ I −Rt

� Rate α is the probablity of a change per unit of time for very small t,

or derivative of s(t) with respect to t for t = 0

� Solving the differential equation for the Jukes-Cantor model,

we get s(t) = (1− e−4αt)/4

� The rate matrix is typically normalized so that there is on average one substitution per

unit of time, that is, α = 1/3
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Correction of evolutionary distances

Pr(Xt0+t = C |Xt0 = A) = 1
4 (1− e−

4
3 t)

The expected number of observed changes per base in time t:

D(t) = Pr(Xt0+t ̸= Xt0) =
3
4 (1− e−

4
3 t)
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Correction of observed distances
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)
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More complex models

� General rate matrix R

R =


. µAC µAG µAT

µCA . µCG µCT

µGA µGC . µGT

µTA µTC µTG .


� µxy is the rate at which base x changes to a different base y

� Namely, µxy = limt→0
Pr(y | x,t)

t

� The diagonal is added so that the sum of each row is 0

� General case: 12 parameters. Jukes-Cantor: 1 parameter (α)

� There are models with a smaller number of parameters (compromise between

Jukes-Cantor and an arbitrary matrix)
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Kimura model

� A and G are purines, C and T pyrimidines

� Purines more often change to other purines

and pyrimidines to pyrimidines

� Transition: change within group A ⇔ G, C ⇔ T ,

Transversion: change to a different group {A,G} ⇔ {C, T}

� Two parameters: rate of transitions α, rate of transversions β

� R =


−2β − α β α β

β −2β − α β α

α β −2β − α β

β α β −2β − α


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HKY model (Hasegawa, Kishino, Yano)

� Extension of Kimura model, which allows different probabilities of A, C, G, T in

the equilibrium

� If we set time to infinity, original base is not important, base frequencies

stabilize in an equilibrium.

� Jukes-Cantor has probability of each base in the equilibrium 1/4.

� In HKY the equilibrium frequencies πA, πC , πG, πT are parameters

(summing to 1)

� Parameter κ: transition / transversion ratio (α/β)

� Rate matrix: µx,y =

 κπy if mutation from x to y is transition

πy if mutation from x to y is transversion
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From rate matrix R to transition probabilities S(t)

� J-C and some other models have explicit formulas for S(t)

� For more complex models, such formulas are not available

� In general, S(t) = eRt

� Exponential of a matrix A is defined as eA =
∑∞

k=0
1
k!A

k

� If R is diagonalized R = UDU−1, where

– D is a diagonal matrix with eigenvalues

– U is the matrix of eigenvectors

� then eRt = UeDtU−1 and the exponential function is applied to the diagnal

elements of D (more efficient)

� Note: diagonalization always exists for symmetric matrices R
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