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Strings

● Alphabet Σ: set of characters (e.g., Σ={A,C,G,T})

● String S: sequence of n=|S| characters drawn from Σ, i.e., S[i]∊Σ for 0≤i<n

AAGTGCTCAAAGCTAAGCTCCAT

AAGTGCTCAAAGCTAAGCTCCAT

AAGTGCTCAAAGCTAAGCTCCAT

AAGTGCTCAAAGCTAAGCTCCATString:

Prefix:

Suffix:

Substring:



String Ordering

Lexicographic/alphabetical order

animal < house < ta < tac < zoo

When no character breaks the tie (e.g., one string is prefix of the other),
shorter comes first.
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String rotation refers to the process of moving characters in a string from one end 
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Special character $

1. Define a new symbol $:
○ $∉Σ
○ $<c ∀c∈Σ

2. Append $ to the string

TACTAC$
ACTAC$
CTAC$
TAC$
AC$
AC$
C$
$

TACTAC$
ACTAC$T
CTAC$TA
TAC$TAC
AC$TACT
C$TACTA
$TACTAC

enforces order on suffixes 
(no suffix is a prefix of any other suffix)

makes all rotations different
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Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression
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Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

TACTAC$
ACTAC$T
CTAC$TA
TAC$TAC
AC$TACT
C$TACTA
$TACTAC

$TACTAC
AC$TACT
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Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

TACTAC$
ACTAC$T
CTAC$TA
TAC$TAC
AC$TACT
C$TACTA
$TACTAC

$TACTAC
AC$TACT
ACTAC$T
C$TACTA
CTAC$TA
TAC$TAC
TACTAC$

TACTAC$ CTTAAC$Rotate Sort Get last

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

(i) (ii) (iii)

Burrows-Wheeler Matrix 
(BWM)

(BWT)



Permutation

BWT permutes characters according to their right contexts

C $TACTA
T AC$TAC
T ACTAC$
A C$TACT
A CTAC$T
C TAC$TA
$ TACTAC

$TACTA C
AC$TAC T
ACTAC$ T
C$TACT A
CTAC$T A
TAC$TA C
TACTAC $

BWT (Last)First right context
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Compression

BWT facilitates compression (it does not compress the input string) - bzip
● it tends to cluster identical characters together
● it combines repeated patterns into larger contiguous blocks
● it makes the string easier to compress (e.g., run-length encoding)

CGATGCATCGTAGCAGCATCGATGACCAGAGCATCGACGACGAGCAGACCACAGCAGCAGTACTCAA

GCAGCAGCATCAGCACGACCAGATCTAGCAGCAGTATAGAGAGAGACGACGATCTCATCAGCAGCAT

AAGACGACGACGACTACTACATCGACAGATATAG$

GTCGCTGGGCGGGGGGG TGTTCAGGGTCCCCGACTCCTCCCCGCCCCTTGCCCCCC GGGGTCGGCA

CTATGGGGGGGGGG TAGGGAAATAATAAAAAA T$TAATATACATCACCACCCCAAACAAA

CCCAAAAAAAAAAAAAA TACAACCGAACGAGCAACAAAAAAAA

14,A
(9 bytes vs 14 bytes)*

*Very rough approximation, implementation-dependent,
no encoding (2bit/packed)



BWT in Bioinformatics

● especially convenient for short reads

○ millions of string searches in a long string

● query complexity depends on read size 

(not on genome size)

● “construction” is a 1 time expense



Reversible

S ➡ BWT(S) ➡ S



LF-Mapping (Last-to-First)

Property of BWT that allows to reconstruct the original string from the 
BWT, starting from its end and going backward



LF-Mapping

BWT(BANANA)

?



LF-Mapping
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Let’s give each character, its rank (number of occurrences up to its position)
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We do not need the entire matrix



LF-Mapping

Let’s look at F:
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LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)
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Let’s look at F:

● sorted column
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Let’s look at F:
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LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)
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● Same for Bs
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LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)

Let’s look at F and L:

● As occur in the same order
● Same for Bs
● Same for Ns
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LF-Mapping

More generally,

the ith occurrence of a character in L and the ith occurrence of a 
character in F, correspond to the same occurrence in the original 

string (i.e., they have the same rank)
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Pattern Matching

Given a text T and a pattern P, find P in T

Three queries:

● exist: does P occur in T? Yes/no
● count: how many times does P occur in T? 3
● locate: where does P occur in T? Positions 2 and 5



Solutions

Naive solution:

● check for P at every position in T O(n*m)

Advanced algorithms:

● Knuth-Morris-Pratt O(n + m)

● Boyer-Moore O(n/m) on average, O(n*m) in worst case

● Rabin-Karp O(n + m) on average, O(n*m) worst case

Index-based algorithms (very useful in bioinformatics)

● FM-Index (BWT-based) O(n) for construction (one time expense), O(m) for matching*

*locating requires a more complete analysis 

|T| = n
|P| = m
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

A step back: Suffix Array

What are these?
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● Q-intervals: intervals on the F column referring to string Q
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What are these?
Lexicographically ordered 

suffixes

A step back: Suffix Array
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● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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F L=BWT

What are these?
Lexicographically ordered 

suffixes
⬇

Suffix Array

6
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4
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B A N A N A $
0 1 2 3 4 5 6 

A step back: Suffix Array



Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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Pattern Matching with the BWT



Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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Pattern Matching with the BWT



Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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B-interval: [5,5]
BAN-interval: [5,5]
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NA-interval: [6,7]

Pattern Matching with the BWT



Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

A-interval = [2,4]
⬇
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BAN-interval: [5,5]
A-interval: [2,4]
NA-interval: [6,7]



Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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Pattern Matching with the BWT
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)
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⬇
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

same character in L are not always contiguous
but thanks to LF-mapping, they are on F
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Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

A-interval = [2,4]
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NA-interval = [6,7]
?

same character in L are not always contiguous
but thanks to LF-mapping, they are on F
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We can search a pattern P via |P| backward extensions

Pattern Matching with the BWT - Backward search



We can search a pattern P via |P| backward extensions
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F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [5,7) ➡ ANA-interval [2,4) ➡ BANA-interval [4,5)

P = BANA

We can search a pattern P via |P| backward extensions
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F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [6,7] ➡ ANA-interval [2,4) ➡ BANA-interval [4,5)

P = BANA

We can search a pattern P via |P| backward extensions
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F L=BWT

Pattern Matching with the BWT - Backward search

P = BANA

We can search a pattern P via |P| backward extensions
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F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [6,7] ➡ ANA-interval [3,4] ➡ BANA-interval [4,5)

P = BANA

We can search a pattern P via |P| backward extensions
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F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [6,7] ➡ ANA-interval [3,4] ➡ BANA-interval [5,5]

P = BANA

We can search a pattern P via |P| backward extensions
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Backward search - Complexity

O(m) where m is the length of pattern P



Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the 
character we are interested in!
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Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the 
character we are interested in!
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find N Can we do this in O(1)?
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Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the 
character we are interested in!

F L=BWT

find N Can we do this in O(1)?
Yes!
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FM-Index

● Full-text index combining the BWT with auxiliary data structures

○ efficient indexing

○ efficient querying

○ “store” full input

● Main idea: represent F and L in an efficient and compact way

● Potentially very space-efficient (implementation-dependent)

Ferragina et Manzini. Opportunistic data structures with applications. Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.



Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
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Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative 
counts” of smaller symbols 

for each c∊{$}∪Σ

C = [0, 1, 4, 5]
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Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order
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Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative 
counts” of smaller symbols 

for each c∊{$}∪Σ

C = [0, 1, 4, 5]
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Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT

How many symbols we 
have smaller than N?

C follows lexicographic order

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2



Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT

Array C with “cumulative 
counts” of smaller symbols 

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

Rank matrix Occ1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0
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0
A
0
$
0
B
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A
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1
A
0
N
0
A
0
$
0
B
0
A
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Rank Matrix Occ

Occ is a matrix |Σ|✕|T| that stores for each position i on BWT(T) and for each 
character c∈Σ, the counts the occurrences of c in the first i elements of BWT(T) 

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 0 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2



Rank Matrix Occ

Occ is a matrix |Σ|✕|T| that stores for each position i on BWT(T) and for each 
character c∈Σ, the counts the occurrences of c in the first i elements of BWT(T) 

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2



Given Q-interval [i,j] and symbol c, return cQ-interval if it exists, empty interval otherwise

How to backward extend using C and Occ?

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1

j = C[c] + Occ(c, j)

return  [i, j]



Efficient Backward Extenstion

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1

j = C[c] + Occ(c, j)

return  [i, j]

F L=BWT
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N
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A
0
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0
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A
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0
B
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0
B
0
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2

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5



Efficient Backward Extenstion

F L=BWT

NA-interval = [6,7]
⬇

ANA-interval = [3,4]

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5

1 $
0
B
0
A
0
N
0
A
0
N
0
A
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A
0
N
0
A
0
N
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3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1

j = C[c] + Occ(c, j)

return  [i, j]

✔



Efficient Backward Extenstion BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5

F L=BWT

NA-interval = [6,7]
⬇

ANA-interval = [3,4]

1 $
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N
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0
A
0

2 A
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A
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N
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3 A
1
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A
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0
N
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4 A
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0
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N
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$
0
B
0
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A
0
N
0
A
0
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A
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6 N
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A
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$
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A
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A
2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1 = 1 + 1 + 1 = 3

j = C[c] + Occ(c, j) = 1 + 3 = 4

return  [i, j]

✔



Efficient Backward Extenstion

F L=BWT

NA-interval = [6,7]
⬇

BNA-interval = [6,5]

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5
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0
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0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
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5 B
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A
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0
A
0
N
0
A
0
$
0
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0
A
2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1 = 4 + 1 + 1 = 6

j = C[c] + Occ(c, j) = 4 + 1 = 5

return  [i, j]

✘



Efficient Backward Extenstion

F L=BWT

AN-interval = [3,4]
⬇

NAN-interval = [7,7]

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5
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N
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2 A
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0
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0
N
0
A
0
N
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3 A
1
N
0
A
0
$
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B
0
A
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N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
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2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1 = 5 + 1 + 1 = 7

j = C[c] + Occ(c, j) = 5 + 2 = 7

return  [i, j]

✔



Given pattern P, find it in T

Backward Search

def backwardSearch (P):

    p = len(P)-1

    i,j = C[P[p]], C[P[p]-1] # assuming order

    while p >= 0 and i >= j:

        i,j = backwardExtend(P[p], (i,j))

        p -= 1

    if p >= 0:

        print(“P not found”)

    else:

        print(f“P found: {j-i+1} occurrences”)

Not covered here: how to locate occurrences? Use Suffix Array (although quite expensive, O(nlog(n)) 
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    i,j = C[P[p]], C[P[p]-1] # assuming order

    while p >= 0 and i >= j:

        i,j = backwardExtend(P[p], (i,j))

        p -= 1

    if p >= 0:

        print(“P not found”)

    else:

        print(f“P found: {j-i+1} occurrences”)
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0
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0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1
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Pattern matching with the FM-Index - Complexity

Query time: O(1) for backward extension, O(m) for backward search

Space: O(n*|Σ|) - Occ matrix

…but space can be reduced using advanced data structures based on bit vectors:

● wavelet tree
● rope

Not covered here: how to construct BWT/FM-Index 
● O(n2log(n))
● Vast literature on O(n) approaches
● Start from Suffix Array, O(n) with larger constants

+ what about approximate matches?



Bigger example
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Bigger example
$CGCGCGCGCAGACCAGTTTC
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GACCAGTTTC$CGCGCGCGCA
GCAGACCAGTTTC$CGCGCGC
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Bigger example
$CGCGCGCGCAGACCAGTTTC
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TTC$                T
TTTC$               G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21


