Burrows-Wheeler Transform

Methods in Bioinformatics (Tl)

UNIVERZITA L D i
KOMENSKEHO uca benti
V BRATISLAVE

Strings

e Alphabet 2

e String S

String: AAGTGCTCAAAGCTAAGCTCCAT

Prefix:
Suffix:

Substring:

Strings

e Alphabet Z: set of characters (e.g., 2={A,C,G,T}))

e String S: sequence of n=[S| characters drawn from 2, i.e., S[iJ€X for O<i<n

String: AAGTGCTCAAAGCTAAGCTCCAT

Prefix: AAGTGC

Suffix: CAT
Substring: AAAGC

String Ordering

Lexicographic/alphabetical order

animal < house < ta < tac < zoo

When no character breaks the tie (e.g., one string is prefix of the other),
shorter comes first.

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

m
ACTACT

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

m
ACTACT

CTACTA

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

m
ACTACT

CTACTA

m
TACTAC

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

m
ACTACT

m
CTACTA

m
TACTAC

m
ACTACT

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

m
ACTACT

m
CTACTA

m
TACTAC

m
ACTACT

m
CTACTA

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

m
ACTACT

m
CTACTA

m
TACTAC

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

m
ACTACT

m
CTACTA

m
TACTAC

Special character $

1. Define a new symbol $:
o $4X
o %$<c Vcex:

2. Append $ to the string

Special character $

TACTACS
1. Define a new symbol $: ACTACS
o $4X CTACS
o $<c VceEs TACS enforces order on suffixes
2. Append $ to the string ﬁEg (no suffix is a prefix of any other suffix)
Cs
5

Special character $

TACTACS
1. Define a new symbol $: ACTACS
o $4X CTACS
o $<c VceES TACS enforces order on suffixes
AC $ (no suffix is a prefix of any other suffix)

ACS
Cs
5

2. Append $ to the string

TACTACS
ACTACST
CTACSTA
TACSTAC makes all rotations different
ACSTACT
CSTACTA
STACTAC

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124, 1994
D

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression
(i) (i) (iii)

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124, 1994
D

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression
(i) (i) (iii)

TACTACS

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124, 1994
D

Burrows-Wheeler Transform (BWT)

Reve(gsible pern%tation of the characters of a string, introduced for com;?h(i)ession
TACTACS
ACTACST
CTACSTA
TACTACS —"=— TACSTAC
ACSTACT
CSTACTA
STACTAC

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124, 1994

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

(1)

TACTACS

(1)

Ro tate

TACTACS
ACTACST
CTACSTA
TACSTAC
ACSTACT
CSTACTA
STACTAC

Sort

STACTAC
ACSTACT
ACTACST
CSTACTA
CTACSTA
TACSTAC
TACTACS

Burrows-Wheeler Matrix

(BWM)

Burrows M, Wheeler DJ: A block sorting lossless data compre

(iii)

algorithm.

DgtIEq ipment Corporation, Palo Alto, CA 1994, Techni /Rp rt724 1994

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

(1)

TACTACS

(1)

Ro tate

TACTACS
ACTACST
CTACSTA
TACSTAC
ACSTACT
CSTACTA
STACTAC

Sort

STACTAC
ACSTACT
ACTACST

EsTACTA Get last

CTACSTA
TACSTAC
TACTACS

Burrows-Wheeler Matrix

(BWM)

(iii)

CTTAACS

(BWT)

Burrows M, Wheeler DJ: A block sorting lossless data compre algorithm.
DgtIEq ipment Corporation, Palo Alto, CA 1994, Techni /Rprt724 1994

Permutation

BWT permutes characters according to their right contexts

STACTA C C STACTA
ACSTAC T T ACSTAC
ACTACS T T ACTACS
CSTACT A A CSTACT
CTACST A A CTACST
TACSTA C C TACSTA
TACTAC § & TACTAC
(

First BWT (Last) right context

Compression

BWT facilitates compression (it does not compress the input string)
e jt tends to cluster identical characters together
® jt combines repeated patterns into larger contiguous blocks
® jt makes the string easier to compress (e.qg., run-length encoding)

Compression

BWT facilitates compression (it does not compress the input string) - bzip
e jt tends to cluster identical characters together
® jt combines repeated patterns into larger contiguous blocks
® jt makes the string easier to compress (e.qg., run-length encoding)

CGATGCATCGTAGCAGCATCGATGACCAGAGCATCGACGACGAGCAGACCACAGCAGCAGTACTCAA
GCAGCAGCATCAGCACGACCAGATCTAGCAGCAGTATAGAGAGAGACGACGATCTCATCAGCAGCAT
AAGACGACGACGACTACTACATCGACAGATATAGS
GTCGCTGGGCGGLGLGE TGTTCAGGGTCCCCG/-;LCTCCTCCCCGCCCCTTGCCCCCC GGGGTCGGCA
CTATGGGGGGGGGE TAGGGAAATAATAAAAAA TSTAATATACATCACCACCCCAAACAAA
CCCAAAAAAAAAAAAAA TACAACCGAACGAGCAACAAAAAAAA

14.A *Very rough approximation, implementation-dependent,

(9 bytes vs 14 bytes)* no encoding (2bit/packed)
D

BWT in Bioinformatics

Ultrafast and memory-efficient alignment of short DNA sequences to the human
genome
B Langmead, C Trapnell, M Pop, SL Salzberg - Genome biology, 2009 - Springer
... For the human genome, Burrows-Wheeler indexing allows Bowtie to align more than 25
° especia | |y convenient for short reads million reads per CPU hour with a memory footprint of approximately 1.3 gigabytes. ...
Y% Salva Y9 Cita Citato da 25169 Atrticoli correlati Tutte e 29 le versioni

© millions of string searches in a long string Fast and accurate short read alignment with Burrows—Wheeler transform

([] query Complexity depends on read size H Li, R Durbin - bioinformatics, 2009 - academic.oup.com
..., and present the algorithm for inexact matching which is implemented in BWA. We evaluate
(not on genome size) the performance of BWA on simulated data by comparing the BWA alignment with the true ...

Y¢ Salva Y9 Cita Citato da 52831 Articoli correlati Tutte e 29 le versioni

¢ construction”is a 1time expense STAR: ultrafast universal RNA-seq aligner

A Dobin, CA Davis, F Schlesinger, J Drenkow... - ..., 2013 - academic.oup.com

... Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq
alignment ... STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the ...
Y¢ Salva Y9 Cita Citato da 50265 Articoli correlati Tutte e 21 le versioni

Reversible

S = BWT(S) = S

o

L F-Mapping (Last-to-First)

Property of BWT that allows to reconstruct the original string from the
BWT, starting from its end and going backward

LF-Mapping

BWT(BANANA)

LF-Mapping

BWT(BANANA)

SBANANA
ASBANAN
ANASBAN
ANANASB
BANANAS
NASBANA
NANASBA

ANNBSAA

LF-Mapping

Let’s give each character, its rank (number of occurrences up to its position)

BaAgNgAI N A, %

Ranks are not explicitly stored, we just use them to simplify the exposition
D

LF-Mapping

Let’s give each character, its rank (number of occurrences up to its position)

0
2
1
0
68 06 1
1 2700
112

e
e
1
e

e
e
2
1

e
e
e
1

1
e
e
2

1
1
e
e
12780
061
e-e o

2
1
0
0

BaAgNgAI N A, %

= = 0 > = >
> > > = =2 o
= r = T > 0 >
> 0 > =2 > =
V> = > 0 =2 >
o =T v > =
> o == >

Ranks are not explicitly stored, we just use them to simplify the exposition
D

LF-Mapping

Let’s give each character, its rank (number of occurrences up to its position)

sB AZ
AZ Nl
Al NB
AB BB
BB sB
Nl Al
NB AB
F L

We do not need the entire matrix
D

N - ® ® ® - ®
<L = = MO WV < <€

N = & &® = &
.S.AAABNNF

LF-Mapping
Let’s look at F

LF-Mapping

Let’s look at F;

e sorted column

® D redictable column (as long as we know how many times each character occur)

= = 0 = = >
® B O ® = N

\n

D > Wunrnrroo =2 >
o &0 O = N

® =

LF-Mapping

Let’s look at F;

e sorted column

® D redictable column (as long as we know how many times each character occur)

Let’s look at F and L:

= = 0 = = >
® B O ® = N

\n

D > Wunrnrroo =2 >
o &0 O = N

® =

LF-Mapping

Let’s look at F;

e sorted column A2
L predictable column (as long as we know how many times each character occur) A
2
Al
Let’s look at F and L: 8
® As occurin the same order A
1
)
F L

LF-Mapping

Let’s look at F;

e sorted column

® D redictable column (as long as we know how many times each character occur)

Let’s look at F and L:

e As occurinthe same order
e Same for Bs

LF-Mapping

Let’s look at F;

e sorted column

® D redictable column (as long as we know how many times each character occur)

Let’s look at F and L:

e As occurin the same order
e Same for Bs
e Same for Ns

LF-Mapping

f\o

2

More generally, A1
the i'" occurrence of a character in L and the i occurrence of a Ag
character in F, correspond to the same occurrence in the original B0
string (i.e., they have the same rank) N 1

e

F

D > Wunrnrroo =2 >
o &0 O = N

® =

Why does LF-Mapping hold?

Why does LF-Mapping hold?

in this relative
order?

Why are these As

Why does LF-Mapping hold?

BANANA,

ﬁ

ANASB

e «= o
N <C <C
T = O
= <CT v
<C O <C
= v =
AAA

ASBAN

N

2

A6 BANA

Why are these As

AABNN

in this relative
order?

They are sorted by
their right context

Why does LF-Mapping hold?

5B ANANA, 5B ANANA,
Why are these As AZS BANAN A2$ SANA N1
in this relative A1 A $ BAN A]_N A $ B A NG Why are these As
order? A0 ANA S B ABN ANA $ B0 in this relative
BANANAS, BANANAS, oo
N,A S BANA, N,A S BANA,
N,ANASBA, N,ANASBA,
They are sorted by

their right context

Why does LF-Mapping hold?

95,B ANANA,

Why are these As Azs BANAN
in this relative A1 ASBAN
order? Aa TN A S A
BANANAS,
N.ASBANA,

They are sorted by

their right context

=

D > =2 2 | o

W= > > o) >
O =2 > =

= > 00 2>
=X W > > =

=

D =

p =
=
=
LN
o

o == >

= 0 & & = N

Why are these As
in this relative
order?

They are sorted by their left context

Why does LF-Mapping hold?

N
5B ANANA, A, [5,B ANAN|A,
Why are these As AZS BANAN Nl A2$ BANA Nl
in this relative A1 A $ B A N N0 AIN A $ B A N0 Why are these As
order? A0 A N A S B B0 AGN A N A $ B0 in this relative
BANANAS, Sy BAANANASG, ~— order
NAGSBANA, A, [NJAS B AN[A,
NJANASBA, A, N,AN A S BIA,
They are sorted by They are sorted by their left context,
their right context that by construction (rotations) it’s

their right context

Why does LF-Mapping hold?

N
i%aBANANA7 A2$aBANANA2
W‘hya'rethes.eAs AZS BANA N] Nl A2$ BANA Nl
in th;cggztlve A1 A $ B A I!ﬁ N0 AlN A $ B A NG Why are these As
' AG ANA S Bﬁ B0 AGN ANA $ Ba in this relative
BANANAS, Sy BAANANASG, — order
NASBANA, A, [NJAS B ANA,
NJANASBA, A, N,ANA S B|A,
They are sorted by They are sorted by their left context,
their right context that by construction (rotations) it’s

their right context

Both columns are sorted following the same principle, therefore are in the same order
e

Reversing a BWT

These are just arrays

$0 AZ
AZ Nl
Al NO
AO BO
BO sﬂ
Nl Al
NO AO
F L=BWT

Reversing a BWT

1. Start from first row ($ in F, by construction) l) N1
Al Nﬂ

AO Bﬂ

Bﬂ sﬂ

Nl Al

Nﬂ AO

F L=BWT

%

Reversing a BWT

e

%
1. Start from first row ($ in F, by construction) @

2. Move to L, it contains the character preceding $ o constucton

> " 00 =
- 0 O ®

L=BWT

A%

Reversing a BWT

1. Start from first row ($ in F, by construction)
2. Move to L, it contains the character preceding $ o constucton

3. Jump to F using LF-Mapping (same rank)

Reversing a BWT

H W N

Start from first row ($ in F, by construction)
Move to L, it contains the character preceding $ e consvucon
Jump to F using LF-Mapping (same rank)

Move to L, it contains the preceding character

= = 0 = = >

e = OO0 OO = N

\n

Reversing a BWT

ok~ W N

Start from first row ($ in F, by construction)

Move to L, it contains the character preceding $ e consvucon
Jump to F using LF-Mapping (same rank)

Move to L, it contains the preceding character

Repeat 3-4 until reaching $in L

= = 0 = = >

e = OO0 OO = N

\n

Reversing a BWT

ok~ W N

Start from first row ($ in F, by construction)

Move to L, it contains the character preceding $ e consvucon
Jump to F using LF-Mapping (same rank)

Move to L, it contains the preceding character

Repeat 3-4 until reaching $in L

= = 0 = = >

e = OO0 OO = N

\n

\

Reversing a BWT

so i AZ

1. Start from first row ($ in F, by construction) Az |\|1
2. Move to L, it contains the character preceding $ o constucton A1 No
3. Jump to F using LF-Mapping (same rank) 20 BO
4. Move to L, it contains the preceding character No _ io
5. Repeat 3-4 until reaching $in L N: A:
F L=BWT

A1N1A2$0

Reversing a BWT

so i AZ
1. Start from first row ($ in F, by construction) Az |\|1
2. Move to L, it contains the character preceding $ o constucton A1 No
3. Jump to F using LF-Mapping (same rank) 20 BO
4. Move to L, it contains the preceding character No io
5. Repeat 3-4 until reaching $in L N: A:

F L=BWT

AlN;A, 2

Reversing a BWT

so i AZ

1. Start from first row ($ in F, by construction) Az / |\|1
2. Move to L, it contains the character preceding $ o constucton A1 ” No
3. Jump to F using LF-Mapping (same rank) 20 BO
4. Move to L, it contains the preceding character No io
5. Repeat 3-4 until reaching $in L N: A:
F L=BWT

N0A1N1A2$0

Reversing a BWT

so i AZ

1. Start from first row ($ in F, by construction) Az / |\|1
2. Move to L, it contains the character preceding $ o constucton A1 4 No
3. Jump to F using LF-Mapping (same rank) 20 BO
4. Move to L, it contains the preceding character No io
5. Repeat 3-4 until reaching $in L N: / A:
F L=BWT

N0A1N1A2$0

Reversing a BWT

so i AZ

1. Start from first row ($ in F, by construction) Az / |\|1
2. Move to L, it contains the character preceding $ o constucton A1 4 No
3. Jump to F using LF-Mapping (same rank) 20 BO
4. Move to L, it contains the preceding character No io
5. Repeat 3-4 until reaching $in L N: / S A:
F L=BWT

AONOAlNlAzso

Reversing a BWT

sﬂ i AZ

1. Start from first row ($ in F, by construction) AZ / Nl
2. Move to L, it contains the character preceding $ o constucton A1 4 Ng
3. Jump to F using LF-Mapping (same rank) 20 ga
4. Move to L, it contains the preceding character No Ao
. : : 1 / \ 1

5. Repeat 3-4 until reaching $in L N A
0 0
F L=BWT

A0N0A1N1A2$0

Reversing a BWT

sﬂ i AZ

1. Start from first row ($ in F, by construction) AZ / N1
2. Move to L, it contains the character preceding $ o constucton ﬁ1 \ //’ :;Ig
3. Jump to F using LF-Mapping (same rank) BG . sﬂ
4. Move to L, it contains the preceding character No Ao
. : : 1 / \ 1

5. Repeat 3-4 until reaching $in L N A
0 0
F L=BWT

BEAENOAlNlAzsﬂ

Reversing a BWT

1. Start from first row ($ in F, by construction)

$ [\
N\
ANAR

= -U'\-ew @Z HZ M:l>

AZ
2. Move to L, it contains the character preceding $ e conseucron A1
3. Jump to F using LF-Mapping (same rank) 20
4. Move to L, it contains the preceding character No o
. . . 1 / \ 1
5. Repeat 3-4 until reaching $in L N A
0 0
F L=BWT
BOAGNOAlNlAzso

Reversing a BWT

1. Start from first row ($ in F, by construction)

$ [\
N\
ANAR

= -U'\-ew @Z HZ M:l>

AZ
2. Move to L, it contains the character preceding $ e conseucron A1
3. Jump to F using LF-Mapping (same rank) 20
4. Move to L, it contains the preceding character No o
. . . 1 / \ 1
5. Repeat 3-4 until reaching $in L N A
0 0
F L=BWT
BOAGNOAlNlAzso

Pattern Matching

Pattern Matching

Given atext T and a pattern P, find Pin T

Pattern Matching

Given atext T and a pattern P, find Pin T

Three queries:

Pattern Matching

Given atext T and a pattern P, find Pin T

Three queries:

® exist: does P occurin T? Yes/no

Pattern Matching

Given atext T and a pattern P, find Pin T

Three queries:

e exist: doesPoccurinT? Yes/no
e count: how many times does P occurin T? 3

Pattern Matching

Given atext T and a pattern P, find Pin T

Three queries:

® exist: does P occurin T? Yes/no
e count: how many times does P occurin T? 3
e locate: where does P occurin T? Positions 2 and 5

Solutions

Naive solution: ITI=n
IPl=m

Advanced algorithms:

Index-based algorithms (very useful in bioinformatics)

*locating requires a more complete analysis
D

Solutions

Naive solution: ITI=n
IPl=m
e check for P at every positionin T O(n*m)

Advanced algorithms:

Index-based algorithms (very useful in bioinformatics)

*locating requires a more complete analysis
D

Solutions

Naive solution:

e check for P at every positionin T

Advanced algorithms:

e Knuth-Morris-Pratt

e Boyer-Moore
e Rabin-Karp

ITI=n
Pl =m
O(n*m)

O(n +m)
O(n/m) on average, O(n*m) in worst case

O(n + m) on average, O(n*m) worst case

Index-based algorithms (very useful in bioinformatics)

*locating requires a more complete analysis

Solutions

Naive solution:

e check for P at every positionin T

Advanced algorithms:

e Knuth-Morris-Pratt

e Boyer-Moore
e Rabin-Karp

ITI=n
IPl=m
O(n*m)

O(n +m)
O(n/m) on average, O(n*m) in worst case

O(n + m) on average, O(n*m) worst case

Index-based algorithms (very useful in bioinformatics)

e FM-Index (BWT-based)

O(n) for construction (one time expense), O(m) for matching*

*locating requires a more complete analysis

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

> > > = = VU
== >

I = U

=

> WU
S>> no ==

~N O U W N e
MT= = 0 > > I W\
>

U

L=BWT

A step back: Suffix Array

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

\

15 A

2 A S N

3 ANAS N

What are these? < 4 ANANA$B
s BANANAS

s NAS A

\7NANA$ A

F L=BWT

A step back: Suffix Array

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

(18 A

2 A S N

3 ANAS N

.Whatar-ethese? < : ANANA s B
Lex1cogras/czlf)7c1/rli(c;/;y ordered s BANANA $
s NAS A

¥ NANAS A

F L=BWT

A step back: Suffix Array

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A
2> AS N

3 ANAS N BANANAS

.Whatar-ethese? 4ANANA$B 8123456
LeXICOQFC;LZJf;g(Z;yordered s BANAN A$
s NAS A
T NANAS A
F L=BWT

A step back: Suffix Array

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

616 A
2 AS N

D ANAS N BANANAS

.Whatar-ethese? 4ANANA$B 8123456
LeXICOQFC;LZJf;g(Z;yordered s BANAN A$
5 NAS A
r NANAS A
F L=BWT

A step back: Suffix Array

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

616 A
52 A% N

D ANAS N BANANAS

.Whatar-ethese? 4ANANA$B 8123456
LeXICOQFC;LZJf;g(Z;yordered s BANAN A$
5 NAS A
7 NANAS A
F L=BWT

A step back: Suffix Array

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

616 A
52 A% N

33 ANAS N BANANAS

.Whatar-ethese? 4ANANA$B 8123456
LeXICOQFC;LZJf;g(Z;yordered s BANAN A$
5 NAS A
7 NANAS A
F L=BWT

A step back: Suffix Array

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

515 A
52 A% N

33 ANAS N BANANAS

.Whatar-ethese?].hANANA$B 8123456
LeXICOQFC;LZJf;gZ;yordered @ s BANAN A$
hL s NAS A
SuffixArray 2 ; NANAS A
F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A

2 A S N

B-interval: 3 ANA $ N
BAN-interval:

A-interval: « ANANASB

NA-interval: s BANANA $

s NAS A

7T NANAS A

F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A

AS \

B-interval: [5,5] 3 ANA $ N
BAN-interval:

A-interval: « ANANASB

NA-interval: s BANANAS

s NAS A

7T NANAS A

F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A

AS N

B-interval: [5,5] 3 ANA $ N
BAN-interval: [5,5]

A-interval: « ANANA s -

NA-interval: s BANANAS

5 NAS A

7 NANAS A

F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A

2 AS N

B-interval: [5,5] 3 ANA $ N
BAN-interval: [5,5]

A-interval: [2,4] « ANANA s -

NA-interval: s BANANAS

5 NAS A

7 NANAS A

F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A

AS N

B-interval: [5,5] 3 ANA $ N
BAN-interval: [5,5]

A-interval: [2,4] « ANANA s -

NA-interval: [6,7] s BANANAS

5 NAS A

7 NANAS A

F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A
2 AS N
B-interval: [5,5] 3 ANA $ N A-interval = [2,4]
BAN-interval: [5,5] ANANA s B
A-interval: [2,4] ' NA-interval = [6,7]
NA-interval: [6,7] s BANANAS ?
s NAS A
r NANAS A
F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 S, A,
2 Aa$ N,
3 AIN AS |\|1 A-inter/:[2,4]
’ AZN ANA s BG NA-interval = [6,7]
s B,ANANA $0 >
6 NyA 9 A
7 NJANA 9 A,
F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 5, A,
2 A,S N,
<3 AIN AS |\|1 A-interl =[2,4]
\4 AZN ANA s BG NA-interval = [6,7]
s B,ANANA $a >
6 NyA S A
7 NJANA S A,
F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A
.780
2 A,S N,
<3 AIN AS |\|1 A-interl =[2,4]
2 AZN A N A : s .B.G NA-interval = [6,7]
s B ANANAS, >
5 NJA § A,
P NANAS A
F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

2 A,S N
<3 AIN AS N fina n A-interval = [2,4]
¢ AZN A N A : s B NA-interval = [6,7]
S B AN ANAS, -
6 NpA S A
I NANAS A
F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

15 A
T -0
(2- A0$:'u I\D0
<3 AN A 6 "|\D1 A-interl =[2,4]
s ANANASG B, NA-interval =[6,7]
s B AN AN AY, >
5 NA S A,
1 N].A N A $ AZ same character in L are not always contiguous
F L=BWT

Pattern Matching with the BWT

Algorithm is based on:

e Q-intervals: intervals on the F column referring to string Q
e LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

A-interval = [2,4]

NA-interval = [6,7]
?

same character in L are not always contiguous
but thanks to LF-mapping, they are on F

Pattern Matching with the BWT - Backward search

We can search a pattern P via |P| backward extensions

Pattern Matching with the BWT - Backward search

We can search a pattern P via IP| backward extensions

1 9, A,

2 Aa$ N,

s ANAS N

P = BANA « ALNANA S B,
s BANANAS,

5 NJA § A,

P NANAS A

F L=BWT

Pattern Matching with the BWT - Backward search

We can search a pattern P via IP| backward extensions

1 9, Ag

2 A,S N,

s ANAS N,

P = BANA U AN ANA S B,
s BANANAS,

5 NJA § A,

P NANAS A

F L=BWT

A-interval = [2,4]

Pattern Matching with the BWT - Backward search

We can search a pattern P via IP| backward extensions

15 A

8. 1 8

£ Ag? ,"“{I\Da

<3 AINVV “'<4|\£1

P = BANA s AN NA,/B
N P S b
SMWMG

{SNBA A,

_
=
LU
=

A-interval = [2,4] = NA-interval = [6,7]

Pattern Matching with the BWT - Backward search

We can search a pattern P via IP| backward extensions

o = = > U\
)

= = = = = = ®E E oE N N

‘\I G'\lu'l = wuJ NY |]
= =

A-interval = [2,4] = NA-interval = [6,7]

Pattern Matching with the BWT - Backward search

We can search a pattern P via IP| backward extensions

A-interval = [2,4] = NA-interval =[6,7] = ANA-interval [3,4]

Pattern Matching with the BWT - Backward search

We can search a pattern P via IP| backward extensions

19 Ag

3 ANAE TN,

P=BANA o AN ANATT B,
s BANATA S,

5 N,A S A,

P NNANASG A

F L=BWT

A-interval = [2,4] = NA-interval = [6,7] = ANA-interval [3,4] = BANA-interval [5,5]

Backward search - Complexity

Backward search - Complexity

O(m) where m is the length of pattern P

Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the
character we are interested in!

o) -

A
> I I

Lnr-l>

-~ o
T = = 0O

Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the
character we are interested in!

o) -

find N Can we do this in O(1)?

A
> I I

Lnr-l>

-~ o
T = = 0O

Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the
character we are interested in!

2 A,S N
<3 AIN AS N]fan Can we do this in O(1)?
b AZN ANASGSB Yes!
. B.a.A KA .$.a
6 NBA S A1
7 NIA NAS A2
F L=BWT

FM-Index

e Full-text index combining the BWT with auxiliary data structures
o efficient indexing
o efficient querying

o “store” full input

e Main idea: represent F and L in an efficient and compact way

e Potentially very space-efficient (implementation-dependent)

Ferragina et Manzini. Opportunistic data structures with applications. Foundations of Computer Science,

2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.
D

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 0 AB
counts” of smaller symbols 5> A $ N

for each ce[$jUS : A:N A $ N:

. ANANASB,

s BANANAS,

5 NGA $ A,

T NANAS A

F L=BWT

C follows lexicographic order
D

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 8 AB
counts” of smaller symbols > A $ N

for each ce[$jUS 0 @

s ANAS N,

h « ANANASB,

How many symbols we 5 B A A N A N A s A

have smaller than $? 5 N BA s A1

P NANAS A

F L=BWT

C follows lexicographic order
D

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 8 AB
counts” of smaller symbols > A $ N

for each ce[$jUS 0 @

s ANAS N,

o « ANANASB,

How many symbols we 5 B A A N A N A s A

have smaller than $? 5 N BA s A1

P NANAS A

F L=BWT

C follows lexicographic order
D

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 8 AB
counts” of smaller symbols) A $ N

for each ce[$jUS 0 @

s ANAS N,

“o, « ANANASB,

How many symbols we 5 B @ A N A N A s b

have smaller than A? 5 N 5 A s A 1

P NANAS A

F L=BWT

C follows lexicographic order

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 8 AB
counts” of smaller symbols) A $ N

for each ce[$jUS 0 @

s ANAS N,

“op « ANANASB,

How many symbols we 5 B @ A N A N A s b

have smaller than A? 5 N 5 A s A 1

P NANAS A

F L=BWT

C follows lexicographic order

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 8 AB
counts” of smaller symbols > A $ N
for each ce[$jUS 0 @
s ANAS N,
C=/0,1,]
% « ANANASB,
How many symbols we 5 B BA N A N A s A
have smaller than B? 5 N BA s A1
P NANAS A
F L=BWT

C follows lexicographic order

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 0 AB
counts” of smaller symbols) A $ N

for each ce[$jUS 0 @

s ANAS N,

cos « ANANASB,

How many symbols we 5 B @ A N A N A s b

have smaller than B? 5 N 5 A s A1

P NANAS A

F L=BWT

C follows lexicographic order

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 $ 0 AB
counts” of smaller symbols) A $ N

for each ce[$jUS 0 @

s ANAS N,

crlord] « ANANASB,

How many symbols we 5 B @ A N A N A s b

have smaller than N? 5 N BA s A1

P NANAS A

F L=BWT

C follows lexicographic order

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 19 8 Ag
counts” of smaller symbols > A $ N

for each cg$)US 8 6

3 AIN A $ N1

C:[‘”/4’,5J b AZNANA$ B,

How many symbols we 5 B @ A N A N A s b

have smaller than N? 6 N aA s A1

P NANAS A

F L=BWT

C follows lexicographic order

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

Array C with “cumulative 1 sﬂ Aa Rank matrix Oce
counts” of smaller symbols > A $ N
or each c€($ 8 .
f hcesjU2 : AIN A S N1
C=[0,1,4,5] « ANANASB,
s BANANAS,
5 NA S A
P NANAS A
F L=BWT

Rank Matrix Occ

Occ is a matrix IZI X|T| that stores for each position i on BWT(T) and for each
character c€2, the counts the occurrences of c in the first i elements of BWT(T)

BWT | $ | A | B | N
1 | A
2 | N
3 | N
4 | B
5 | $
6 | A
7 | A

Rank Matrix Occ

Occ is a matrix IZI X|T| that stores for each position i on BWT(T) and for each
character c€2, the counts the occurrences of c in the first i elements of BWT(T)

BWT $ A B N

N
w
o
N

o

> | > |
N
N

How to backward extend using C and Occ?

Given Q-interval [i,j] and symbol c, return cQ-interval if it exists, empty interval otherwise

def backwardExtend (c, [i, jl):
i =0C[c] + O0cc(c, 1 -1) +1
j = Clc] + Occlc, j)

return [i, j]

Efficient Backward Extenstion

def backwardExtend (c, [1, jl):
i = C[c] +# Occ(c, 1 -1) +1
j = Clc] + Occ(c, j)

return [i, j]

1 50 A,
2 Aa$ N,
y ANAS N
« ANANASB,
s BANANAS,
5 NoA § A,
P NANAS A

F L=BWT

Efficient Backward Extenstion

def backwardExtend (c, [1, jl):
i = C[c] +# Occ(c, 1 -1) +1
j = Clc] + Occ(c, j)

return [i, j]

1 9, Ag
) Aa$ N,
y ANAS N
. ANANASB,
s BANANAS,
s NA S A,
P NANAS A

F L=BWT

B 0] 1 1 2
$ 1 1 1 2
A 1 2 1 2
A 1 3 1 2
C 0 1 4 5

NA-interval = [6,7]

0

ANA-interval = [3,4] v/

Efficient Backward Extenstion

1 Al o] 1] o] o0
def backwardExtend (c, [i, j]): 2 | N | 0| 1| 0 |1
'i_:[[c]+[]cc(c,i—1]+1 =1+1+1 =3 3 N 0 1 0 2
j = C[c] + Occlc,) =1 + 3 = 4 4 B 0 1 1 2

return [i, j] 5 $ 1 - 1| 2

*1 sa A0 6 A 1 2 1 2
: A0$ Na c 0 - 4 | s
3 A1N A S N1
b AZN ANAS B0
: BOA NANA $0Y NA-interval = [6,7]
6 NOA S A1
7 NIA N A $ A2 Y ANA-interval = [3,4] vV

F L=BWT

Efficient Backward Extenstion Bwr| s |A 8N
1 A 0] 1 0 0]
def backwardExtend (c, [1, jl): 2 N o | 1| 0o | 1
i=1C[c] + Occ(c, i-1)+1 =4+1+1 =6 3 | N | 0| 1| 0|2
j = C[c] + Occlc,) =4 + 1 =5 4 B o | 1 1 2
return [i, j] 5 $ 1 1
6 A 1 2
i §0$ ﬁa 7 A 1 3
0 0 C 0] 1
3 A1N AS N1
> AzN ANAS B0
s BANANA
N" A S /i"v NA-interval = [6,7]
b e 1
P NNANAS A BNA-interval = [6,5] X
F L=BWT

Efficient Backward Extenstion

N
1 Al o] 1] o] o0
def backwardExtend (c, [i, j]): 2 N O | 1] O -
'i_:[[c]+[]cc(c,i—1]+1 =5 +1+1 =17 3 N 0 1 0 2
j = Clc] + Occlc, j) =5+ 2 = 7 4 B 0 1 1-
return [i, j] 5 $ 1 1 1| 2
1 A 6 A 1 2 1 2
) ias Nal 7 A 1 3 1 2
0 o c o | 1| a -
s ANAS N
« ANANASB,
s BANANA
> N" A S i" \ AN-interval = [3,4]
b Mo 1
1 NIA N A $ Az NAN-interval = [7,7] ¢/
F L=BWT

Backward Search

Given pattern P, find it in T

def backwardSearch (P):
p = len(P)-1
i,j = C[P[p]], C[P[p]-1] # assuming order
while p >= 0 and i >= j:
i,j = backwardExtend(P[p], (i,3j))
p -=1
if p >= 0:
print (“P not found”)
else:

print (f“P found: {j-i+1} occurrences”)

Not covered here: how to locate occurrences?
D

Backward Search

Given pattern P, find it in T

def backwardSearch (P):

p = len(P)-1 b 1 $ A
i, = C[P[p]], C[P[p]-1] # assuming order 55, A s N
whilt.a?>=0andi>=j: . 3 3 ANA$ N

Iz,L—lbackwardExtend(P[p], (1,3)) 1 . A N A N A $ B
if p >= 0: s BANANA $

print (“P not found”) L s N A $ A
else: 27 NANAS A

print (f“P found: {j-i+1} occurrences”)

Not covered here: how to locate occurrences? Use Suffix Array (although quite expensive, O(nlog(n))
D

Pattern matching with the FM-Index - Complexity

Query time: O(1) for backward extension, O(m) for backward search

Space: O(n*IZl) - Occ matrix

...but space can be reduced using advanced data structures based on bit vectors:

® wavelet tree

® [Oope
Not covered here: how to construct BWT/FM-Index

e O(n’log(n))
e \ast literature on O(n) approaches
e Start from Suffix Array, O(n) with larger constants

+ what about approximate matches?
D

N =
SO w

, 154 C
Bigger example 2 A 6
3 A C
L A C
5 C T
6 C G
7 C C
8 C A
g (G
10 C G
11 C G
12 C 9
13 G A
14 G C
15 G C
16 G C
17 G C
18 G A
T T

T T

T G

NJ
[

Bigger example

0O ~NOY UL P W N

NN R R R e e R e
P ® W O~NoOO U &~ WNRFR O W

SCGCGCGCGCAGACCAGTTTC
ACCAGTTTCSCGCGLGCGCAG
AGACCAGTTTCSCGLGCGCGC
AGTTTCSCGCGCGCGCAGACC
CSCGCGCGCGCAGACCAGTTT
CAGACCAGTTTCSCGCGCGCG
CAGTTTCSCGLGCGCGCAGAC
CCAGTTTCSCGCGCGCGCAGA
CGCAGACCAGTTTCSCGCGCG
CGCGCAGACCAGTTTCSCGCG
CGCGCGCAGACCAGTTTCSCG
(GCGCGCGCAGACCAGTTTCS
GACCAGTTTCSCGCGCGCGCA
GCAGACCAGTTTCSCGLGCGC
GCGCAGACCAGTTTCSCGLGC
GCGCGCAGACCAGTTTCSCGC
GCGCGCGCAGACCAGTTTCSC
GTTTCSCGCGCGCGCAGACCA
TCSCGCGCGCGCAGACCAGTT
TTCSCGCGCGCGCAGACCAGT
TTTCSCGCGCGCGCAGACCAG

. 1 SCGCGCGCGCAGACCAGTTTC
Bigger example) ACCAGTTTCS G
3 AGACCAGTTTCS C
L AGTTTCS C
5 (§ T
6 CAGACCAGTTTCS G
7 CAGTTTCS C
8 CCAGTTTCS A
9 CGCAGACCAGTTTCS G
10 CGCGCAGACCAGTTTCS G
11 CGCGCGCAGACCAGTTTCS G
12 C(GCGCGCGCAGACCAGTTTCS
13 GACCAGTTTCS A
14 GCAGACCAGTTTCS C
15 GCGCAGACCAGTTTCS C
16 GCGCGCAGACCAGTTTCS C
17 GCGCGCGCAGACCAGTTTCSC
18 GTTTCS A
19 TCS T
20 TTCS T
21 TTTCS G

