
Burrows-Wheeler Transform

Methods in Bioinformatics (TI)

Luca Denti

Strings

● Alphabet Σ

● String S

AAGTGCTCAAAGCTAAGCTCCATString:

Prefix:

Suffix:

Substring:

Strings

● Alphabet Σ: set of characters (e.g., Σ={A,C,G,T})

● String S: sequence of n=|S| characters drawn from Σ, i.e., S[i]∊Σ for 0≤i<n

AAGTGCTCAAAGCTAAGCTCCAT

AAGTGCTCAAAGCTAAGCTCCAT

AAGTGCTCAAAGCTAAGCTCCAT

AAGTGCTCAAAGCTAAGCTCCATString:

Prefix:

Suffix:

Substring:

String Ordering

Lexicographic/alphabetical order

animal < house < ta < tac < zoo

When no character breaks the tie (e.g., one string is prefix of the other),
shorter comes first.

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

tACTACT

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

tACTACT

taCTACTA

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

tACTACT

taCTACTA

tacTACTAC

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

tACTACT

taCTACTA

tacTACTAC

tactACTACT

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

tACTACT

taCTACTA

tacTACTAC

tactACTACT

tactaCTACTA

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

tACTACT

taCTACTA

tacTACTAC

tactACTACT

tactaCTACTA

String Rotations

String rotation refers to the process of moving characters in a string from one end
to the other while maintaining their order.

TACTAC

tACTACT

taCTACTA

tacTACTAC

tactACTACT

tactaCTACTA

String Rotations

Special character $

1. Define a new symbol $:
○ $∉Σ
○ $<c ∀c∈Σ

2. Append $ to the string

Special character $

1. Define a new symbol $:
○ $∉Σ
○ $<c ∀c∈Σ

2. Append $ to the string

TACTAC$
ACTAC$
CTAC$
TAC$
AC$
AC$
C$
$

enforces order on suffixes
(no suffix is a prefix of any other suffix)

Special character $

1. Define a new symbol $:
○ $∉Σ
○ $<c ∀c∈Σ

2. Append $ to the string

TACTAC$
ACTAC$
CTAC$
TAC$
AC$
AC$
C$
$

TACTAC$
ACTAC$T
CTAC$TA
TAC$TAC
AC$TACT
C$TACTA
$TACTAC

enforces order on suffixes
(no suffix is a prefix of any other suffix)

makes all rotations different

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

(i) (ii) (iii)

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

TACTAC$

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

(i) (ii) (iii)

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

TACTAC$
ACTAC$T
CTAC$TA
TAC$TAC
AC$TACT
C$TACTA
$TACTAC

TACTAC$ Rotate

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

(i) (ii) (iii)

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

TACTAC$
ACTAC$T
CTAC$TA
TAC$TAC
AC$TACT
C$TACTA
$TACTAC

$TACTAC
AC$TACT
ACTAC$T
C$TACTA
CTAC$TA
TAC$TAC
TACTAC$

TACTAC$ Rotate Sort

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

(i) (ii) (iii)

Burrows-Wheeler Matrix
(BWM)

Burrows-Wheeler Transform (BWT)

Reversible permutation of the characters of a string, introduced for compression

TACTAC$
ACTAC$T
CTAC$TA
TAC$TAC
AC$TACT
C$TACTA
$TACTAC

$TACTAC
AC$TACT
ACTAC$T
C$TACTA
CTAC$TA
TAC$TAC
TACTAC$

TACTAC$ CTTAAC$Rotate Sort Get last

Burrows M, Wheeler DJ: A block sorting lossless data compression algorithm.
Digital Equipment Corporation, Palo Alto, CA 1994, Technical Report 124; 1994

(i) (ii) (iii)

Burrows-Wheeler Matrix
(BWM)

(BWT)

Permutation

BWT permutes characters according to their right contexts

C $TACTA
T AC$TAC
T ACTAC$
A C$TACT
A CTAC$T
C TAC$TA
$ TACTAC

$TACTA C
AC$TAC T
ACTAC$ T
C$TACT A
CTAC$T A
TAC$TA C
TACTAC $

BWT (Last)First right context

Compression

BWT facilitates compression (it does not compress the input string)
● it tends to cluster identical characters together
● it combines repeated patterns into larger contiguous blocks
● it makes the string easier to compress (e.g., run-length encoding)

Compression

BWT facilitates compression (it does not compress the input string) - bzip
● it tends to cluster identical characters together
● it combines repeated patterns into larger contiguous blocks
● it makes the string easier to compress (e.g., run-length encoding)

CGATGCATCGTAGCAGCATCGATGACCAGAGCATCGACGACGAGCAGACCACAGCAGCAGTACTCAA

GCAGCAGCATCAGCACGACCAGATCTAGCAGCAGTATAGAGAGAGACGACGATCTCATCAGCAGCAT

AAGACGACGACGACTACTACATCGACAGATATAG$

GTCGCTGGGCGGGGGGG TGTTCAGGGTCCCCGACTCCTCCCCGCCCCTTGCCCCCC GGGGTCGGCA

CTATGGGGGGGGGG TAGGGAAATAATAAAAAA T$TAATATACATCACCACCCCAAACAAA

CCCAAAAAAAAAAAAAA TACAACCGAACGAGCAACAAAAAAAA

14,A
(9 bytes vs 14 bytes)*

*Very rough approximation, implementation-dependent,
no encoding (2bit/packed)

BWT in Bioinformatics

● especially convenient for short reads

○ millions of string searches in a long string

● query complexity depends on read size

(not on genome size)

● “construction” is a 1 time expense

Reversible

S ➡ BWT(S) ➡ S

LF-Mapping (Last-to-First)

Property of BWT that allows to reconstruct the original string from the
BWT, starting from its end and going backward

LF-Mapping

BWT(BANANA)

?

LF-Mapping

BWT(BANANA)

ANNB$AA

$
0
B
0
A
0
N
0
A
0
N
0
A
0

A
0
$
0
B
0
A
0
N
0
A
0
N
0

A
0
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
0
A
0
$
0
B
0
A
0
N
0
A
0

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Let’s give each character, its rank (number of occurrences up to its position)

LF-Mapping

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Ranks are not explicitly stored, we just use them to simplify the exposition

Let’s give each character, its rank (number of occurrences up to its position)

LF-Mapping

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Ranks are not explicitly stored, we just use them to simplify the exposition

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

Let’s give each character, its rank (number of occurrences up to its position)

LF-Mapping

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

We do not need the entire matrix

LF-Mapping

Let’s look at F:

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)

Let’s look at F and L:

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)

Let’s look at F and L:

● As occur in the same order

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)

Let’s look at F and L:

● As occur in the same order
● Same for Bs

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

LF-Mapping

Let’s look at F:

● sorted column
● predictable column (as long as we know how many times each character occur)

Let’s look at F and L:

● As occur in the same order
● Same for Bs
● Same for Ns

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

LF-Mapping

More generally,

the ith occurrence of a character in L and the ith occurrence of a
character in F, correspond to the same occurrence in the original

string (i.e., they have the same rank)

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L

Why does LF-Mapping hold?

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why does LF-Mapping hold?

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why are these As
in this relative

order?

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why does LF-Mapping hold?

Why are these As
in this relative

order?

They are sorted by
their right context

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why does LF-Mapping hold?

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why are these As
in this relative

order?

They are sorted by
their right context

Why are these As
in this relative

order?

Why does LF-Mapping hold?

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why are these As
in this relative

order?

They are sorted by
their right context

Why are these As
in this relative

order?

They are sorted by their left context,
that by construction (rotations) it’s

their right context

Why does LF-Mapping hold?

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why are these As
in this relative

order?

They are sorted by
their right context

Why are these As
in this relative

order?

They are sorted by their left context,
that by construction (rotations) it’s

their right context

A
2

N
1
N
0
B
0
$
0

A
1

A
0

Why does LF-Mapping hold?

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

$
0
B
0
A
0
N
0
A
0
N
0
A
2

A
2
$
0
B
0
A
0
N
0
A
0
N
1

A
1
N
0
A
0
$
0
B
0
A
0
N
0

A
0
N
0
A
0
N
0
A
0
$
0
B
0

B
0
A
0
N
0
A
0
N
0
A
0
$
0

N
1
A
0
$
0
B
0
A
0
N
0
A
1

N
0
A
0
N
0
A
0
$
0
B
0
A
0

Why are these As
in this relative

order?

They are sorted by
their right context

Why are these As
in this relative

order?

They are sorted by their left context,
that by construction (rotations) it’s

their right context

A
2

N
1
N
0
B
0
$
0

A
1

A
0

Both columns are sorted following the same principle, therefore are in the same order

Reversing a BWT

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

These are just arrays

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Reversing a BWT

1. Start from first row ($ in F, by construction)

2. Move to L, it contains the character preceding $ (by construction)

3. Jump to F using LF-Mapping (same rank)

4. Move to L, it contains the preceding character

5. Repeat 3-4 until reaching $ in L

F

$
0
B
0
A
0
N
0
A
1
N
1
A
2

A
2
$
0
B
0
A
0
N
0
A
1
N
1

A
1
N
1
A
2
$
0
B
0
A
0
N
0

A
0
N
0
A
1
N
1
A
2
$
0
B
0

B
0
A
0
N
0
A
1
N
1
A
2
$
0

N
1
A
2
$
0
B
0
A
0
N
0
A
1

N
0
A
1
N
1
A
2
$
0
B
0
A
0

L=BWT

B
0
A
0
N
0
A
1
N
1
A
2
$
0

Pattern Matching

Pattern Matching

Given a text T and a pattern P, find P in T

Pattern Matching

Given a text T and a pattern P, find P in T

Three queries:

Pattern Matching

Given a text T and a pattern P, find P in T

Three queries:

● exist: does P occur in T? Yes/no

Pattern Matching

Given a text T and a pattern P, find P in T

Three queries:

● exist: does P occur in T? Yes/no
● count: how many times does P occur in T? 3

Pattern Matching

Given a text T and a pattern P, find P in T

Three queries:

● exist: does P occur in T? Yes/no
● count: how many times does P occur in T? 3
● locate: where does P occur in T? Positions 2 and 5

Solutions

Naive solution:

● check for P at every position in T O(n*m)

Advanced algorithms:

● Knuth-Morris-Pratt O(n + m)

● Boyer-Moore O(n/m) on average, O(n*m) in worst case

● Rabin-Karp O(n + m) on average, O(n*m) worst case

Index-based algorithms (very useful in bioinformatics)

● FM-Index (BWT-based) O(n) for construction (one time expense), O(m) for matching*

*locating requires a more complete analysis

|T| = n
|P| = m

Solutions

Naive solution:

● check for P at every position in T O(n*m)

Advanced algorithms:

● Knuth-Morris-Pratt O(n + m)

● Boyer-Moore O(n/m) on average, O(n*m) in worst case

● Rabin-Karp O(n + m) on average, O(n*m) worst case

Index-based algorithms (very useful in bioinformatics)

● FM-Index (BWT-based) O(n) for construction (one time expense), O(m) for matching*

*locating requires a more complete analysis

|T| = n
|P| = m

Solutions

Naive solution:

● check for P at every position in T O(n*m)

Advanced algorithms:

● Knuth-Morris-Pratt O(n + m)

● Boyer-Moore O(n/m) on average, O(n*m) in worst case

● Rabin-Karp O(n + m) on average, O(n*m) worst case

Index-based algorithms (very useful in bioinformatics)

*locating requires a more complete analysis

|T| = n
|P| = m

Solutions

Naive solution:

● check for P at every position in T O(n*m)

Advanced algorithms:

● Knuth-Morris-Pratt O(n + m)

● Boyer-Moore O(n/m) on average, O(n*m) in worst case

● Rabin-Karp O(n + m) on average, O(n*m) worst case

Index-based algorithms (very useful in bioinformatics)

● FM-Index (BWT-based) O(n) for construction (one time expense), O(m) for matching*

*locating requires a more complete analysis

|T| = n
|P| = m

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

A step back: Suffix Array

What are these?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

What are these?
Lexicographically ordered

suffixes

A step back: Suffix Array

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

F L=BWT

B A N A N A $
0 1 2 3 4 5 6

What are these?
Lexicographically ordered

suffixes

A step back: Suffix Array

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

6

B A N A N A $
0 1 2 3 4 5 6

What are these?
Lexicographically ordered

suffixes

A step back: Suffix Array

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

6
5

B A N A N A $
0 1 2 3 4 5 6

What are these?
Lexicographically ordered

suffixes

A step back: Suffix Array

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

6
5
3

B A N A N A $
0 1 2 3 4 5 6

What are these?
Lexicographically ordered

suffixes

A step back: Suffix Array

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

F L=BWT

What are these?
Lexicographically ordered

suffixes
⬇

Suffix Array

6
5
3
1
0
4
2

B A N A N A $
0 1 2 3 4 5 6

A step back: Suffix Array

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

F L=BWT

B-interval:
BAN-interval:
A-interval:
NA-interval:

Pattern Matching with the BWT

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

F L=BWT

B-interval: [5,5]
BAN-interval:
A-interval:
NA-interval:

Pattern Matching with the BWT

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

F L=BWT

B-interval: [5,5]
BAN-interval: [5,5]
A-interval:
NA-interval:

Pattern Matching with the BWT

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

F L=BWT

B-interval: [5,5]
BAN-interval: [5,5]
A-interval: [2,4]
NA-interval:

Pattern Matching with the BWT

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

F L=BWT

B-interval: [5,5]
BAN-interval: [5,5]
A-interval: [2,4]
NA-interval: [6,7]

Pattern Matching with the BWT

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

A-interval = [2,4]
⬇

NA-interval = [6,7]
?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

B-interval: [5,5]
BAN-interval: [5,5]
A-interval: [2,4]
NA-interval: [6,7]

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

A-interval = [2,4]
⬇

NA-interval = [6,7]
?

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

A-interval = [2,4]
⬇

NA-interval = [6,7]
?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

A-interval = [2,4]
⬇

NA-interval = [6,7]
?

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

find N A-interval = [2,4]
⬇

NA-interval = [6,7]
?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

same character in L are not always contiguous
but thanks to LF-mapping, they are on F

A-interval = [2,4]
⬇

NA-interval = [6,7]
?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Algorithm is based on:

● Q-intervals: intervals on the F column referring to string Q
● LF-mapping: how to obtain cQ-interval from Q-interval (backward extension)

F L=BWT

Pattern Matching with the BWT

A-interval = [2,4]
⬇

NA-interval = [6,7]
?

same character in L are not always contiguous
but thanks to LF-mapping, they are on F

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

We can search a pattern P via |P| backward extensions

Pattern Matching with the BWT - Backward search

We can search a pattern P via |P| backward extensions

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

F L=BWT

Pattern Matching with the BWT - Backward search

P = BANA

F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [5,7) ➡ ANA-interval [2,4) ➡ BANA-interval [4,5)

P = BANA

We can search a pattern P via |P| backward extensions

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [6,7] ➡ ANA-interval [2,4) ➡ BANA-interval [4,5)

P = BANA

We can search a pattern P via |P| backward extensions

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

F L=BWT

Pattern Matching with the BWT - Backward search

P = BANA

We can search a pattern P via |P| backward extensions

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

A-interval = [2,4] ➡ NA-interval = [6,7] ➡ ANA-interval [2,4) ➡ BANA-interval [4,5)

F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [6,7] ➡ ANA-interval [3,4] ➡ BANA-interval [4,5)

P = BANA

We can search a pattern P via |P| backward extensions

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

F L=BWT

Pattern Matching with the BWT - Backward search

A-interval = [2,4] ➡ NA-interval = [6,7] ➡ ANA-interval [3,4] ➡ BANA-interval [5,5]

P = BANA

We can search a pattern P via |P| backward extensions

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Backward search - Complexity

Backward search - Complexity

O(m) where m is the length of pattern P

Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the
character we are interested in!

F L=BWT

find N

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the
character we are interested in!

F L=BWT

find N Can we do this in O(1)?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Backward search - Complexity

O(m) where m is the length of pattern P

but this is true if we do not need to iterate over each interval to find the
character we are interested in!

F L=BWT

find N Can we do this in O(1)?
Yes!

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

FM-Index

● Full-text index combining the BWT with auxiliary data structures

○ efficient indexing

○ efficient querying

○ “store” full input

● Main idea: represent F and L in an efficient and compact way

● Potentially very space-efficient (implementation-dependent)

Ferragina et Manzini. Opportunistic data structures with applications. Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on. IEEE, 2000.

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C follows lexicographic order

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

How many symbols we
have smaller than $?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

How many symbols we
have smaller than $?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

How many symbols we
have smaller than A?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

How many symbols we
have smaller than A?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

How many symbols we
have smaller than B?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT
C follows lexicographic order

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

How many symbols we
have smaller than B?

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT

How many symbols we
have smaller than N?

C follows lexicographic order

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT

How many symbols we
have smaller than N?

C follows lexicographic order

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Efficient backward extension (FM-Index)

Only things we need for backward extensions/search are F and L columns,
but we can represent them in a more convenient way

F L=BWT

Array C with “cumulative
counts” of smaller symbols

for each c∊{$}∪Σ

C = [0, 1, 4, 5]

Rank matrix Occ1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

Rank Matrix Occ

Occ is a matrix |Σ|✕|T| that stores for each position i on BWT(T) and for each
character c∈Σ, the counts the occurrences of c in the first i elements of BWT(T)

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 0 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

Rank Matrix Occ

Occ is a matrix |Σ|✕|T| that stores for each position i on BWT(T) and for each
character c∈Σ, the counts the occurrences of c in the first i elements of BWT(T)

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

Given Q-interval [i,j] and symbol c, return cQ-interval if it exists, empty interval otherwise

How to backward extend using C and Occ?

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1

j = C[c] + Occ(c, j)

return [i, j]

Efficient Backward Extenstion

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1

j = C[c] + Occ(c, j)

return [i, j]

F L=BWT

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5

Efficient Backward Extenstion

F L=BWT

NA-interval = [6,7]
⬇

ANA-interval = [3,4]

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1

j = C[c] + Occ(c, j)

return [i, j]

✔

Efficient Backward Extenstion BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5

F L=BWT

NA-interval = [6,7]
⬇

ANA-interval = [3,4]

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1 = 1 + 1 + 1 = 3

j = C[c] + Occ(c, j) = 1 + 3 = 4

return [i, j]

✔

Efficient Backward Extenstion

F L=BWT

NA-interval = [6,7]
⬇

BNA-interval = [6,5]

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1 = 4 + 1 + 1 = 6

j = C[c] + Occ(c, j) = 4 + 1 = 5

return [i, j]

✘

Efficient Backward Extenstion

F L=BWT

AN-interval = [3,4]
⬇

NAN-interval = [7,7]

BWT $ A B N

1 A 0 1 0 0

2 N 0 1 0 1

3 N 0 1 0 2

4 B 0 1 1 2

5 $ 1 1 1 2

6 A 1 2 1 2

7 A 1 3 1 2

C 0 1 4 5

1 $
0
B
0
A
0
N
0
A
0
N
0
A
0

2 A
0
$
0
B
0
A
0
N
0
A
0
N
0

3 A
1
N
0
A
0
$
0
B
0
A
0
N
1

4 A
2
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
0
A
0
$
0
B
0
A
0
N
0
A
1

7 N
1
A
0
N
0
A
0
$
0
B
0
A
2

def backwardExtend (c, [i, j]):

i = C[c] + Occ(c, i − 1) + 1 = 5 + 1 + 1 = 7

j = C[c] + Occ(c, j) = 5 + 2 = 7

return [i, j]

✔

Given pattern P, find it in T

Backward Search

def backwardSearch (P):

 p = len(P)-1

 i,j = C[P[p]], C[P[p]-1] # assuming order

 while p >= 0 and i >= j:

 i,j = backwardExtend(P[p], (i,j))

 p -= 1

 if p >= 0:

 print(“P not found”)

 else:

 print(f“P found: {j-i+1} occurrences”)

Not covered here: how to locate occurrences? Use Suffix Array (although quite expensive, O(nlog(n))

Given pattern P, find it in T

Backward Search

def backwardSearch (P):

 p = len(P)-1

 i,j = C[P[p]], C[P[p]-1] # assuming order

 while p >= 0 and i >= j:

 i,j = backwardExtend(P[p], (i,j))

 p -= 1

 if p >= 0:

 print(“P not found”)

 else:

 print(f“P found: {j-i+1} occurrences”)

Not covered here: how to locate occurrences? Use Suffix Array (although quite expensive, O(nlog(n))

1 $
0
B
0
A
0
N
0
A
0
N
0
A
2

2 A
2
$
0
B
0
A
0
N
0
A
0
N
1

3 A
1
N
0
A
0
$
0
B
0
A
0
N
0

4 A
0
N
0
A
0
N
0
A
0
$
0
B
0

5 B
0
A
0
N
0
A
0
N
0
A
0
$
0

6 N
1
A
0
$
0
B
0
A
0
N
0
A
1

7 N
0
A
0
N
0
A
0
$
0
B
0
A
0

6
5
3
1
0
4
2

Pattern matching with the FM-Index - Complexity

Query time: O(1) for backward extension, O(m) for backward search

Space: O(n*|Σ|) - Occ matrix

…but space can be reduced using advanced data structures based on bit vectors:

● wavelet tree
● rope

Not covered here: how to construct BWT/FM-Index
● O(n2log(n))
● Vast literature on O(n) approaches
● Start from Suffix Array, O(n) with larger constants

+ what about approximate matches?

Bigger example
$ C
A G
A C
A C
C T
C G
C C
C A
C G
C G
C G
C $
G A
G C
G C
G C
G C
G A
T T
T T
T G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Bigger example
$CGCGCGCGCAGACCAGTTTC
ACCAGTTTC$CGCGCGCGCAG
AGACCAGTTTC$CGCGCGCGC
AGTTTC$CGCGCGCGCAGACC
C$CGCGCGCGCAGACCAGTTT
CAGACCAGTTTC$CGCGCGCG
CAGTTTC$CGCGCGCGCAGAC
CCAGTTTC$CGCGCGCGCAGA
CGCAGACCAGTTTC$CGCGCG
CGCGCAGACCAGTTTC$CGCG
CGCGCGCAGACCAGTTTC$CG
CGCGCGCGCAGACCAGTTTC$
GACCAGTTTC$CGCGCGCGCA
GCAGACCAGTTTC$CGCGCGC
GCGCAGACCAGTTTC$CGCGC
GCGCGCAGACCAGTTTC$CGC
GCGCGCGCAGACCAGTTTC$C
GTTTC$CGCGCGCGCAGACCA
TC$CGCGCGCGCAGACCAGTT
TTC$CGCGCGCGCAGACCAGT
TTTC$CGCGCGCGCAGACCAG

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

Bigger example
$CGCGCGCGCAGACCAGTTTC
ACCAGTTTC$ G
AGACCAGTTTC$ C
AGTTTC$ C
C$ T
CAGACCAGTTTC$ G
CAGTTTC$ C
CCAGTTTC$ A
CGCAGACCAGTTTC$ G
CGCGCAGACCAGTTTC$ G
CGCGCGCAGACCAGTTTC$ G
CGCGCGCGCAGACCAGTTTC$
GACCAGTTTC$ A
GCAGACCAGTTTC$ C
GCGCAGACCAGTTTC$ C
GCGCGCAGACCAGTTTC$ C
GCGCGCGCAGACCAGTTTC$C
GTTTC$ A
TC$ T
TTC$ T
TTTC$ G

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

