We have dynamic programming, what else do we need?
Running time: O(n2) on two sequences of length n
Memory: basic implementation O (n?), but can be done in O(n)

We need a more efficient algorithm, particularly for comparative genomics

Heuristic alignment
e Trade sensitivity for speed (some alignments not found)

e Reduce the search to “promising” parts of the matrix

Heuristic local alignment
BLASTN [Altschul et al 1990], FASTA [Pearson 1988]

e Find short exact matches of length k (seeds)
e Extend hits along diagonals to ungapped alignments
e Connect alignments on nearby diagonals to gapped alignment

e Possibly optimize by dynamic programming

Heuristic local alignment

Example: start from seeds of length k = 2

(in practice we would use £ = 11 or more)

C AG T C C T A G A

1. find hits

3. gapped

>—>0-4O0-4>0

Running time of heuristic local alignment
Algorithm
e Find seeds (short exact matches of length k)
e Expensive step: extiend/connect seeds to longer alignments

Random seeds of length £: not part of any high-scoring alignment.
These are filtered in the extension step, but they slow down the program

How many random hits?

Two unrelated nucleotides match with probability 1 / 4

We have k matches in a row with probability 4

Expected number of false positives roughly nmd "

Increase of k by 1 means cca 4-fold decrease of spurious seeds

Sensitivity of heuristic local alignment

Algorithm
e Find seeds (short exact matches of length k)
e Expensive step: extiend/connect seeds to longer alignments

Some alignments not found: high score but no seed of length &

Example: CA-GTCCTA no seed of length k > 4
CATGTCATA

Sensitivity: fraction of real alignments containing a seed of length &

Can we estimate the sensitivity?

Assume random ungapped alignment of length L
Every position match with probability p

Sensitivity f (L, p) = Pr(alignment contains k consecutive matches)

1.0+
T._ﬁ 0.8
3 4
[0.6 —p:0.6
S —p=0.7
=
£ 04- —p=03
s —p=0.9
Z
g 0.2
0.0 +=H—"— I — I ,
0 100 200 300

alignment length L

(human-mouse: p ~ 0.7)

an, = number of binary sequences of length n that do not contain k adjacent 1s (k = 2)

0 00
1 01
10
11

000
001
010
011
100
101
110
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

ag = 20 = 1, since n < k (empty string)
a1 =21 = 2,sincen < k
az =2+ 1 =3, ie #“0) + #“1’)

a3 =3+2+0=5
i.e, #(“.07) + #(“..17) + #(*11")

ag =5+3=28
ie, #("..0") + #("...1") + #(“.11)

an = an—1+apn—2+ap—3+...+0n_L

arn, = number of binary sequences of length n that do not contain k adjacent 1s (k = 3)

0 00
1 01
10
11

000
001
010
011
100
101
110
111

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

ag = 20 = 1, since n < k (empty string)
a1 =21 = 2,sincen < k
as = 22 = 4, sincen < k

a3 =4+4+2+1=7
i.e, #(".07) + #(".17) + #(*..11")

as=7+4+2=13
&, H(".0%) + #(1)+ #(1T)

an = ap—1 +an—2 + an—3

an = an—1+apn—2+ap—3+...+0n_L

How to find short exact matches?

e Create a dictionary of k-mers (short substrings of length k) from the first

sequence.
e Search for all k-mers from the second sequence in the dictionary

Exmple: CAGTCCTAGA vs CATGTCATA

Dictionary: Search for:
AG 2, 8 CA — 1
CA 1 AT — -
CC 5 TG — -
CT 6 GT — 3
GA 9 TC — 4
GT 3 CA — 1
TA 7 AT — -
TC 4 TA — 7

