
We have dynamic programming, what else do we need?

Running time: O(n2) on two sequences of length n

Memory: basic implementation O(n2), but can be done in O(n)

We need a more efficient algorithm, particularly for comparative genomics

1



Heuristic alignment

� Trade sensitivity for speed (some alignments not found)

� Reduce the search to “promising” parts of the matrix

Heuristic local alignment

BLASTN [Altschul et al 1990], FASTA [Pearson 1988]

� Find short exact matches of length k (seeds)

� Extend hits along diagonals to ungapped alignments

� Connect alignments on nearby diagonals to gapped alignment

� Possibly optimize by dynamic programming

2



Heuristic local alignment

Example: start from seeds of length k = 2

(in practice we would use k = 11 or more)

C A G T C C T A G A
0 0 0 0 0 0 0 0 0 0 0

C 0 1 0 0 0 1 1 0 0 0 0
A 0 0 2 1 0 0 0 0 1 0 0
T 0 0 1 1 2 1 0 1 0 0 0
G 0 0 0 2 1 0 0 0 0 1 0
T 0 0 0 0 3 2 1 1 0 0 0
C 0 1 0 0 0 4 3 0 0 0 0
A 0 0 2 1 0 3 3 2 1 0 1
T 0 0 1 1 2 2 2 4 3 2 1
A 0 0 1 0 1 1 1 3 5 4 3

1. find hits
2. ungapped
3. gapped

3



Running time of heuristic local alignment

Algorithm

� Find seeds (short exact matches of length k)

� Expensive step: extend/connect seeds to longer alignments

Random seeds of length k: not part of any high-scoring alignment.

These are filtered in the extension step, but they slow down the program

How many random hits?

Two unrelated nucleotides match with probability 1/4

We have k matches in a row with probability 4−k

Expected number of false positives roughly nm4−k

Increase of k by 1 means cca 4-fold decrease of spurious seeds

4



Sensitivity of heuristic local alignment

Algorithm

� Find seeds (short exact matches of length k)

� Expensive step: extend/connect seeds to longer alignments

Some alignments not found: high score but no seed of length k

Example: CA-GTCCTA

CATGTCATA

no seed of length k ≥ 4

Sensitivity: fraction of real alignments containing a seed of length k

5



Can we estimate the sensitivity?

Assume random ungapped alignment of length L

Every position match with probability p

Sensitivity f(L, p) = Pr(alignment contains k consecutive matches)

0 100 200 300

alignment length L

0.0

0.2

0.4

0.6

0.8

1.0

se
n

si
ti

v
it

y
 f

o
r 

w
=

1
1

p=0.6

p=0.7

p=0.8

p=0.9

(human-mouse: p ≈ 0.7)

6



an = number of binary sequences of length n that do not contain k adjacent 1s (k = 2)

0 00 000 0000 a0 = 20 = 1, since n < k (empty string)

1 01 001 0001

10 010 0010 a1 = 21 = 2, since n < k

11 011 0011

100 0100 a2 = 2 + 1 = 3, i.e, #(“.0”) + #(“.1”)

101 0101

110 0110 a3 = 3 + 2 + 0 = 5

111 0111 i.e, #(“..0”) + #(“..1”) + #(“.11”)

1000

1001 a4 = 5 + 3 = 8

1010 i.e, #(“...0”) + #(“...1”) + #(“..11”)

1011

1100 an = an−1 + an−2

1101 an = an−1+an−2+an−3+ . . .+an−k

1110

1111

7



an = number of binary sequences of length n that do not contain k adjacent 1s (k = 3)

0 00 000 0000 a0 = 20 = 1, since n < k (empty string)

1 01 001 0001

10 010 0010 a1 = 21 = 2, since n < k

11 011 0011

100 0100 a2 = 22 = 4, since n < k

101 0101

110 0110 a3 = 4 + 2 + 1 = 7

111 0111 i.e, #(“..0”) + #(“..1”) + #(“..11”)

1000

1001 a4 = 7 + 4 + 2 = 13

1010 i.e, #(“...0”) + #(“...1”) + #(“..11”)

1011

1100 an = an−1 + an−2 + an−3

1101 an = an−1+an−2+an−3+ . . .+an−k

1110

1111

8



How to find short exact matches?

� Create a dictionary of k-mers (short substrings of length k) from the first

sequence.

� Search for all k-mers from the second sequence in the dictionary

Exmple: CAGTCCTAGA vs CATGTCATA

Dictionary:
AG 2, 8
CA 1
CC 5
CT 6
GA 9
GT 3
TA 7
TC 4

Search for:
CA → 1
AT → -
TG → -
GT → 3
TC → 4
CA → 1
AT → -
TA → 7

9


