Príklady stavových automatov pre HMM

Uvazujme HMM so specialnym zaciatocnym stavom b a koncovym stavom e, ktore nic negeneruju.

  • Nakreslite HMM (stavovy diagram), ktory generuje sekvencie, ktore zacinaju niekolkymi cervenymi pismenami a potom obsahuju niekolko modrych
  • Ako treba zmenit HMM, aby dovoloval ako “niekolko” aj nula?
  • Ako treba zmenit HMM, aby pocet cervenych aj modrych bol vzdy parne cislo?
  • Ako zmenit HMM, aby sa striedali cervene a modre kusy parnej dlzky? Poznamka: v HMM nahladanie genov sme chceli mat kodujucu oblast delitelnu 3, co je trochu podobne

V dalsich prikladoch uvazujeme aj to, ktore pismena su v ktorom stave povolene (pravdepodobnost emisie > 0) a ktore su zakazane

  • cervena sekvencia dlzky dva, ktora zacina na A
  • cervena sekvencia dlzky dva, ktora je hocico okrem AA
  • cervena sekvencia dlzky tri, ktora je hocica okrem stop kodonu (TAA, TAG, TGA)
  • toto sa da rozsirit na HMM, ktory reprezentuje ORF, teda nieco, co zacina start kodonom, potom niekolko beznych kodonov, ktore nie su stop kodonom a na koniec stop kodon

Dalsi biologicky priklad HMM: topologia transmembranovych proteinov.

E-hodnota (E-value) zarovnania

  • Priklady k tejto casti v prezentacii
  • Mame dotaz dlzky m, databazu dlzky n, skore najlepsieho lokálneho zarovnania S
  • E-hodnota je ocakavany pocet zarovnani so skore aspon S ak dotaz aj databaza su nahodne
  • Hrackarsky priklad: dotaz dlzky m=10, databaza dlzky n=300, S=6
  • Zoberme nas nahodny model s obsahom GC 50%
  • Mame vrece s gulockami oznacenymi A,C,G,T, z kazdej 25%
  • Vytiahneme gulicku, zapiseme si pismeno, hodime ju naspat, zamiesame a opakujeme s dalsim pismenom atd az kym nevygenerujeme m pismen pre dotaz a n pismen pre databazu
  • Pre nase vygenerovane sekvencie spocitame, kolkokrat sa dotaz vyskytuje v databaze
  • Cely experiment opakujeme vela krat a spocitame priemerny pocet vyskytov, co bude odhad E-hodnoty

Vypocet strednej hodnoty vzorcom namiesto simulacie (rychlejsie)

$E = Kmn e^{-\lambda S}$

  • n a m su dlzky porovnavanych sekvencii, S je skore, K a lambda su parametre, ktore zavisia od skorovacej schemy a od frekvencii vyskytu jednotlivych baz v nasom modeli nahodnej sekvencie.
  • Napr blastn pre skorovaci system zhoda 1, nezhoda -1, medzera -2 používa lambda=0.800, K=0.0640
  • $E = 0.0640 nm 0.45^S$.
  • Zdvojnásobenie dĺžky databázy alebo dĺžky dotazu zdvojnásobí E-hondotu
  • Zníženie skóre o 1 tiež zhruba zdvojnásobí E-value (delenie 0.45, t.j. nasobenie 2.2)
    • Cislo, ktorym nasobime, zalezi od lambda a teda od skorovacej schemy a frekvencii vyskytu baz