HWbioinf2
See also the lecture.
Submit the protocol and the required files to /submit/bioinf2
Input files
Copy files from /tasks/bioinf2/
mkdir bioinf2
cd bioinf2
cp -iv /tasks/bioinf2/* .
Files:
ref.fastais a 38kb piece of the genome of the fungus Aspergillus nidulansrnaseq.fastqare RNA-seq reads from Illumina sequencer extracted from the Short read archiveannot.gffis the reference gene annotation from the database (we will consider this as correct gene positions)
Task A: Gene finding
Run the Augustus gene finder with two versions of parameters:
- one trained specifically for A. nidulans genes
- one trained for the human genome, where genes have different statistical properties (for example, they are longer and have more introns)
augustus --species=anidulans ref.fasta > augustus-anidulans.gtf
augustus --species=human ref.fasta > augustus-human.gtf
The results of gene finding are in the GTF format. Examine the files and try to find the answers to the following questions using command-line tools.
(a) How many exons are in each of the two GTF files? (Beware: simply
using grep with pattern CDS may yield lines containing this string
in a different column. You can use e.g. techniques from the
lecture and exercises on
command-line tools).
(b) How many genes are in each of the two GTF files? (The files contain
rows with word gene in the second column, one for each gene)
(c) How many exons and genes are in the annot.gff file with reference
annotation?
Write the answers and commands to the protocol. Submit files
augustus-anidulans.gtf and augustus-human.gtf.
Task B: Aligning RNA-seq reads
- Align RNA-seq reads to the genome.
- We will use a specialized tool
STAR, which can recognize introns. - First, run the following commands:
STAR --runMode genomeGenerate --genomeDir ref-index --genomeFastaFiles ref.fasta --genomeSAindexNbases 6
STAR --genomeDir ref-index --alignIntronMax 10000 --readFilesIn rnaseq.fastq --outFileNamePrefix rnaseq-star.
- Then sort the resulting SAM file using samtools, store it as a BAM file and create its index, similarly as in the previous homework.
- In addition to the BAM file, we produced a file
rnaseq-star.SJ.out.tabcontaining the position of detected introns (here called splice junctions or splices). Find in the manual of STAR description of this file. - There are also additional files with logs and statistics.
Examine the files to find out answers to the following questions (you
can find some of the answers manually by looking at the the files, e.g.
by less command):
(a) How many reads were in the FASTQ file? How many of them were successfully mapped?
(b) How many introns (splice junctions) were predicted? How many of them are supported by more than one read?
Finally, convert the file with splice junctions to BED format in which each line will be one intron. It should have the following columns:
- Sequence name (as in the
SJ.out.tabfile) - Start (beware, it should be 1 less than the number in the SJ.out.tab file because of 1-based vs. 0-based coordinates)
- End (as in the
SJ.out.tabfile) - Name (create some identifier, e.g. numbering the junctions sequentially)
- Score (use the number of supporting reads as score)
- Strand (+, -, or ., needs to be converted from numeric value in
SJ.out.tab)
For conversion, you can write a short script in your favorite language
or use a one-liner. The result should be named
rnaseq-star-introns.bed.
Write your answers to the protocol. Submit the files
rnaseq-star.bam and rnaseq-star-introns.bed.
Task C: Visualizing in IGV
As before, run IGV as follows:
igv -g ref.fasta &
Open additional files using menu File -> Load from File: annot.gff,
augustus-anidulans.gtf, augustus-human.gtf, rnaseq.bam,
rnaseq-star-introns.bed
- In GTF and GFF files, exons are shown as thicker boxes, introns are thinner.
- For each of the following questions, select a part of the sequence
illustrating the answer and export a figure using
File->Save image - You can check these images using command
eog
Questions:
(a) Create an image illustrating differences between Augustus with human
parameters and the reference annotation, save as a.png. Briefly
describe the differences in words.
(b) Find some differences between Augustus with A. nidulans parameters
and the reference annotation. Store an illustrative figure as b.png.
Which parameters have yielded a more accurate prediction?
(c) Zoom in to one of the genes with a high expression level and try to
find spliced read alignments supporting the annotated intron boundaries.
Store the image as c.png.
Submit files a.png, b.png, c.png. Write answers to your
protocol.